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ADVERTISEMENT.

As this is the only portion of a treatise on Acoustics,

intended to comprise the practical as well as the the-

oretical parts of the subject, which will proceed from

the pen of its Author, a few words are required to

explain the circumstances under which it now appears.

The Author, the late Professor Donkin, has passed

away prematurely from the work. It was a work he

was peculiarly qualified to undertake, being a mathe-

matician of great attainments and rare taste, and taking

an especial interest in the investigation and application

of the higher theorems of analysis which are necessary

for these subjects. He was, moreover, an accomplished

musician, and had a profound theoretical knowledge

of the Science of Music.

He began this work early in the year 1867 ; but he

was continually interrupted by severe illness, and was

much hindered by the difficiilty, and in many instances

the impossibility, of obtaining accurate experimental

results at the places wherein his delicate health com-

pelled him to spend the winter months of that and the

following years. He took, however, so great an interest

in the subject, that he continued working at it to within

two or three days of his death.

The part now published contains an inquiry into

the Vibrations of Strings and Rods, together with an

explanation of the more elementary theorems of the
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subject, and is, in the opinion of its Author, complete in
itself; his wish was that it should be published as soon
as possible

; and he was pleased at knowing that the
last pages of it were passing through the Press im-
mediately before the time of his death. It is the first

portion of the theoretical part.

It was intended that the second portion should con-

tain the investigation into the Vibrations of Stretched

Membranes and Plates ; into the Motion of the Mole-

cules of an Elastic Body ; and into the Mathematical

Theory of Sound. Professor Donkin did not live long

enough to complete any part of this section of the

work.

The third portion was intended to contain the prac-

tical part of the subject ; and the theory and practice of

Music would have been most fully considered. It is

exceedingly to be regretted that the Professor did not

live to complete this portion ; for the combination of the

qualities necessary for it is seldom met with, and he

possessed them in a remarkable degree. Not even a

sketch or an outline is found amongst his papers. He

had formed the plan in his own mind and often talked

of it with pleasure.- It can now never be written as

he would have written it.

BARTHOLOMEW PRICE.

1 1, St. Giles', Oxford,

Feb. i6, 1870.
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CHAPTER I.

GENERAL INTRODUCTION.

1. The sensation of sound, like that of light, may be pro-

duced in exceptional and extraordinary ways. But the first step

in the usual process consists in the communication of a vibra-

tory motion to the tympanic membrane of the ear, through

slight and rapid changes in the pressure of the air on its outer

surface.

The ear may be considered as consisting essentially of two

parts, of which one is the organ of communication with the

external world, and the other of communication with the brain.

2. The former part is a tube of irregular form, divided into

two portions of nearly equal length by the tympanic membrane,

which is stretched across it somewhat obliquely as a transverse

diaphragm. The shorter and wider part of the tube is outside

the tympanic membrane, and ends at the orifice of the external

ear. This part is called the Meatus.

The part of the tube immediately within the tympanic mem-
brane is called the Tympanum, and the remainder the Eustachian

Tube.

The Eustachian tube leads into the pharynx, that is, the

cavity behind the tonsils and uvula, into which the nostrils also

open. But the orifice of the Eustachian tube, though capable

of being opened, is usually closed. It is opened involuntarily

in the act of swallowing, and can be opened voluntarily by

a muscular effort not easily described but easily made ; and the

opening is accompanied by a slight sensation in the ear, due to

a temporary change in the pressure of the air in the tympanum.

Thus the meatus on the one hand, and the tympanum and
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Eustachian tube on the other, always contain air, but under

different conditions. The air in the meatus is liable to be

directly aflfected by every change, however slight and rapid, in

the pressure of the external air, with which it is always in free

communication ; but that within the tympanic membrane, being

only occasionally put into communication with the external air

by the opening of the Eustachian tube, is not liable to be

directly affected by slight and rapid changes, though it takes

part in the slower fluctuations shewn by the barometer.

3. The second, or interior, part of the ear is contained

within a cavity which is called the bony labyrinth, because it is

of a complicated form, and is surrounded by bone except in

two places. These two places may be compared to windows,

looking into the tympanum, but completely closed by mem-
branes, so that' neither air nor fluid can pass through them.

One of these is called the mal and the other the round window.

The interior of this bony labyrinth is filled with fluid, in

which are suspended membranous bags, following nearly the

same form, and themselves containing fluid.

The terminal fibres of the auditory nerve are distributed over

the surfaces (or parts of the surfaces) of these membranous

bags, and there are special arrangements of which the object

appears to be the communication to these nervous fibres of

any agitation affecting the fluid.

4. The tympanic membrane is connected with that which

closes the ^oval window' by a link-work of small bones con-

tained in the open space of the tympanum, in such a manner
that when the former membrane is bulged inwards or outwards

by an increase or diminution of the pressure on its external

surface, a similar movement is impressed on the latter; and

although the fluid within is probably as incompressible as water

(of which it chiefly consists), the membrane of the ' round

window' allows it to yield by expanding outwards when that

of the oval window is forced inWards, and vice versd.

Thus the motion impressed on the tympanic membrane by
the external air is communicated to the fluid contained in the

labyrinth, and from that to the fibres of the auditory nerve, by

'iii
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means of the apparatus mentioned above, which need not be
further described at present ^

It is probable also that motion is partly propagated from the

tympanic membrane through the air in the tympanum to the

membrane of the round window, and so to the fluid.

5. The ' pressure' of the air at any point must be understood
to mean, as usual, the pressure which would be exerted on a

unit of surface by air of the same density and temperature as

at the point in question.

When the pressure at any point varies with the time, the

variation may be graphically represented by means of a ' curve

of pressure,' in which the abscissa M oi any point P is pro-

portional to the time elapsed since a given instant, and the

ordinate MP to the excess of pressure above a standard value,

which may be taken arbitrarily. A negative ordinate (as at P)
represents of course a defect of pressure below the standard

value.

As we shall chiefly have occasion to consider cases in which

the average (or mean) pressure remains unaltered, it will be

convenient to assume that average as the standard value repre-

sented by the axis of abscissse X.

Changes of density may evidently be represented in the same

way by a ' curve of density,' in which positive ordinates repre-

sent condensation, and negative ordinates dilatation. The curves

of pressure and of density will differ slightly in form, because

^ A full description, with illustrations, of the structure of the ear, so far
~

as it is known at present, will be found in Helmholtz, p. 198, &c., and in

Huxley's ' Lessons in Elementary Physiology,' p. 204, &c., and other recent

works on Anatomy and Physiology. But the reader is recommended to

study the subject, if possible, with the help of anatomical preparations or

models. For the purposes of this treatise, however, nothing is absolutely

necessary to be known beyond what is stated here or hei-eafter in the text.
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pressure is not in general strictly proportional to density; the

reasons and consequences of this fact, however, do not concern

us at present.

Although it is convenient to use the word ' curve,' it must

be understood that the lines representing changes of pressure

or density are not necessarily curved in the ordinary sense, but

may consist either wholly or in part of straight portions.

6. Those slight and rapid changes in the pressure of the air

in contact with the tympanic membrane, which cause (Art. 1)

the sensation of sound, do not in general alter the average

pressure ; so that they would be represented by a wavy curve

including upon the whole equal areas above and below the

axis of abscissae.

A wavy curve may or may not be periodic. A periodic curve

consists of repetitions of a single portion, thus

:

Fig. 2.

The period or wave-length of such a curve is the smallest dis-

tance A B which, measured from any arbitrary point along the

axis, has the ordinates at its extremities always equal : in other

words, it is the projection, on the axis, of the smallest portion

which is repeated.

7. Sounds are usually divided into two classes : namely, un-

musical sounds, or noises; and musical sounds, or noks.

As regards sensation, the distinction between these two classes

of sounds is said to be that notes have pitch and noises have

not; and, as regards the mode of their production, that the

curve of pressure (Art. 6) is periodic in the case of a musical

sound, and non-periodic in the case of a noise. But these

statements require more explanation and correction than might

at first sight be expected.

In the first place, it is obvious to common observation that

few, if any, noises are perfectly unmusical, that is, absolutely

without pitch. Two noises of the same general character often
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differ from one another in a way which we describe by calling

one of them more acute or sharp, and the other more grave or

flat ; for example, the reports of a pistol and of a cannon.

On the other hand, few, if any, sounds are perfectly musical,

that is, absolutely unmixed with noise.

Hence the question presents itself whether there is after all

a real distinction in kind between noises and notes, and if there

is, in what it consists.

8. Before attempting to answer this question, we must notice

two facts of fundamental importance.

The first is, that any sound whatever, if repeated at equal

and sufficiently short intervals of time, generates a note, of'

which the pitch depends upon the frequency of repetition of

the original or elementary sound. This is easily verified by

simple experiments. For instance, if the point of a quill pen,

or the edge of a card, be held against the teeth of a wheel

which is turned slowly, the passage of each tooth produces a

sharp noise or ' click.' But if the velocity of rotation of the

wheel be gradually increased, the clicks gradually cease to be

heard separately, and are replaced by a sound which gradually

acquires a continuous character, and a pitch which rises as the

velocity increases. The connection between the frequency of

repetition of the elementary sound, and the pitch of the resultant

note, will be considered afterwards.

The second fact is, that more than one sound can be heard

at once. This is familiar to every one. But the following

considerations will shew that it is very remarkable.

9. In the case above supposed, each passage of a tooth of

the wheel across the quill or card produces a disturbance in the

air, which is propagated in all directions (unless some obstacle

intervene) in the form of a wave.

The nature of sound-waves in air will be considered here-

after. At present it is sufficient to say that though they are

essentially different in most respects from ordinary waves in

water, they have one important property in common, namely,

that different sets of waves can be propagated at the same time,

either in the same or in different directions, without destroying
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one another. And it results from the mechanical theory that

when the waves are very small, the different sets are simply

superposed; that is, the disturbance produced at any point, and

at any given time, by the combined action of waves belonging

to different sets, is the sum of the disturbances which would

have been produced by the waves of each set separately.

In this proposition the word sum is to be understood, accord-

ing to circumstances, either in the ordinary algebraical sense,

or in the extended sense in which the diagonal of a parallelo-

gram is called (in symbolical geometry) the sum of two con-

tiguous sides.

Thus, in the case of sound-waves in air, the disturbance at

any point may be considered either as a displacement of par-

ticles, or as an alteration of pressure and density. And the

whole change, either of pressure or density, is the algebraical

sum of the changes which would have been produced by waves

of each set separately ; while the displacement of any particle

is the sum of the separate displacements in the sense just

explained.

Thus, suppose A is the undisturbed position of a particle

which, at a given instant, would be

displaced to P by the action of a

wave belonging to one set, and to

Q by that of a wave belonging to

another set. Then the actual dis-

placement at the same instant will

be io R, AR being the diagonal of

^'g- 3- the parallelogram constructed upon

AP, AQ.
This law of the composition of displacements, which is iden-

tical in form with that of the composition of forces in Mechanics,

may be stated in another manner thus

:

Each separate cause of displacement acts independently of other

causes; a proposition which is to be understood as follows :

—

The actual displacement AR\% the same as if the particle

were first displaced by one cause along A P, and then by the

other along a line P R, equal and parallel to the displacement
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A Q, which the latter cause would have produced if acting

alone.

It is important to recollect that this law of the ' superposition

of displacements ' is not a universal law in the same sense as

that of the composition of forces. It depends, in fact, upon

the condition that the force which tends to restore a displaced

particle to its undisturbed position is directly proportional to

the displacement; and this condition, in most cases in which

it subsists at all, subsists rigorously only for infinitely small

displacements.

The law, however, is sensibly true, so far as most of the

phaenomena of sound are concerned, in the case of the greatest i

disturbances produced by ordinary causes.

10. This being premised, let us consider a continuous noise,

lasting say for a small fraction of a second, in which the ear

can recognise no definite pitch. And suppose the curve of

B

Fig. 4.

pressure (that is, the curve representing in the way above ex-

plained (Art. 5) the changes of pressure close to the tympanic

membrane) to be the black line A B C D, Fig. 4.

Suppose a different noise, of the same duration, to have for its

curve of pressure the dotted line in the same figure. Then, if

Fig- 5'

the causes producing such noises both act at once, the resultant

variation of pressure will be represented, as in Fig. 5, by a
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curve, of which the ordinates are the algebraical sums of the

corresponding ordinates in Fig. 4.

-Now in such a case the two noises do not in general

coalesce into one, but are heard distinctly, though simul-

taneously. It is only when the two curves of Fig. 4 are nearly

similar, that is, when the two noises are very like one another,

that the ear does not easily resolve the resultant sound into its

two components.

On the other hand, there is nothing in the curve of Fig. 5,

which can suggest to the eye the process of composition by

which it was generated. It looks quite as simple as either

of its components ; and although it might be arbitrarily re-

solved into two in an infinite variety of ways, there is nothing

in its appearance to indicate one way as more natural than

any other ^.

It is evident then t)iat the ear has a power of resolution

which the eye has not ; or rather, that the ear resolves accord-

ing to some law peculiar to itself, whereas the eye either does

not resolve at all, or resolves arbitrarily.

11. This phsenomenon is still more remarkable when the

component curves are periodic. Let AB CDEFG, Fig. 6,

B E

-At

C C ^ F

Fig. 6.

represent two periods of a periodic change of pressure; the

curve consisting of repetitions of the portion ABCD. Simi-

larly let abcdefg represent three periods of another periodic

change, occupying the same time as two periods of the former.

1 The curves in the above figures are represented as made up of strairfit
hues, merely for convenience of drawing. Whether their forms be or be
not such as could really occur, is quite immaterial to the argument. The
pomt essential to be understood is this : that whatever be the forms of the
component curves, the eye cannot in general distinguish them in the
resultant curve.
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The resultant curve consists of repetitions of the portion

P Q, Fig. 7, and is therefore also periodic.

Fig. 7.

If the periods be sufficiently short, each of the curves in

Fig. 6 will correspond to a musical note ; and the curve in

Fig. 7 represents the variation of pressure which takes place

when the two notes are heard simultaneously. Now, it is

a well-known fact that in such a case the ear in general dis-

ting^shes both notes ; that is, it resolves the resultant curve of

Fig. 7 into the two components of Fig. 6. But the eye sees

nothing more in Fig. 7 than a curve having a period repre-

sented by the abscissa P Q, and entirely fails to distinguish the
'

different periods of the component curves. Here again, then, I

we find that the ear resolves according to a law of its own.
'

12. But a new question now presents itself. If a curve like

P Q is resolved by the ear into two components, why is not

each component similarly resolved ? If the repetition oi P Q
represents two simultaneous but distinguishable notes, why may

not the repetition oiAB CD represent two notes in the same

way; and why may not each component of ABCD be itself

again resolved, and so on ad infinitum P
(

The answer is, that all this does in general really happen;

and that a perfectly simple musical tone, that is, a tone such as

,

the ear cannot resolve, is rarely heard except when produced!

by means specially contrived for the purpose.

Thus the sound produced by a vibrating string, of a piano-

forte or violin for instance, is in general compounded of

simple tones, theoretically unlimited in number. Only a few

of them, however, are loud enough to be actually heard. These

few constitute a combination which is always heard from the

same string under the same circumstances ; hence we acquire
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a habit of associating them together and perceiving them as

a single note of a special character ; and it requires an effort

of attention, which is difficult when first attempted by the

unassisted ear, to analyse the compound sensation. In the

case of a string this difficulty is increased by the circumstance

that the audible component tones form in general an agreeable

consonance. When, however, two strings, not in unison,

vibrate at once, we distinguish their notes perfectly; partly

because there is in this case no habit of association, and partly

because the component tones of one do not in general foiin

a consonant combination with those of the other.

The sound of a large bell is compounded of many simple

tones, some of which combine agreeably and some produce

harsh dissonances. In this case every one perceives easily the

complex character of the sound. Still the habit of association

prevents us from mistaking the sound of one bell for the sound

of two ; and on the other hand, when two bells are struck at

once, we distinguish the two compound sounds more or less

perfectly ; notwithstanding the very confused combination of

simple tones.

13. We can now give at least a partial answer to the ques-

tion. What is a noise? It is in general a combination of

a number of musical tones too near to one another in pitch

to be distinguished by the unassisted ear.

The effect produced by ringing all the bells of a peal at

once, or striking all the twelve keys of an octave on a piano-

forte at once, shews how a confused combination of tones

tends to become a noise. And it may be easily conceived that

the change would be much more complete if, for example,

twelve notes intermediate between C and C J were heard at

once.

It appears, then, that a noise and a simple tone are extreme

cases of sound. The former is so complex that the ordinary

powers of the ear fail to resolve it. The latter is incapable

of resolution by reason of its absolute simplicity.

14. It is evident therefore that the question, Whal is an
absolutely simple tone ? or rather. What is the character of the
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sound-waves which produce such tones, and of the correspond-

ing curves of pressure ? is of fundamental importance.

It is evident also that some correction is required to the

statement referred to above (Art. 7), that musical notes have

pitch. Strictly speaking, only an absolutely simple tone has

a single determinate pitch. When we speak of the pitch of the

note produced by a string or an organ-pipe, we mean in fact

the pitch of the gravest simple tone in the combination. This

particular component is in general louder than any of the

others, and is that on which attention is fixed. The others

become associated with it by habit, and seem only to modify

its character, without destroying the unity of its pitch.

15. As it will often be necessary to distinguish between

simple and compvound musical sounds, we shall always use

(as in the preceding articles) the words tone and note for this

purpose.

Objections may easily be made to both these terms. In fact

the word tone is often used with express reference to that very

complexity which it is here intended to exclude ; as when we
say that the tone of a violin is different from that of a clarinet,

or that any instrument has a good or bad tone. Again, note

properly signifies the written mark which indicates what musical

sound is to be played or sung, arid not the sound itself.

But it may be answered that tone (Gr. ToVor) really means!

tension, and the effect of tension is to determine the pitch of the

sound of a string. Hence the word may naturally be used

to denote a sound with reference only to its pitch ; and there-

fore, in particular, to denote a simple sound which has a single

pitch, and has (as will be seen hereafter) no other distinctive

quality except loudness or softness.

And with respect to note, it may be answered that the trans-

ition from the written mark to the thing signified is in fact

habitually made, as when we say that a person sings wrong

notes.

Again, the written note is a direction to sing or play, not

a simple sound, but that particular complex sound which is

produced by the voice or by the instrument intended to be
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used; and the particular sound produced is in fact a note

or characteristic mark of the kind of instrument. In this sense

we speak of the note of the blackbird or of the nightingale.

16. For these reasons we shall henceforth denote a simple

musical sound by the word tone, and the elementary sound

of any instrument, such as that of a violin string, an organ-pipe,

or the human voice, by the word note.

Thus a note will be in general a complex sound, though

it may accidentally, through the peculiarity of a particular

instrument, be simple, or nearly so'.

' Helraholtz uses the words Klang and Ton to signify compound and
simple musical sounds. We have followed him in adopting the latter
term. But such a sound as that of the human voice could hai-dly be called
in English a clang, without doing too much violence to estabUshed usage.



CHAPTER II.

MISCELLANEOUS DEFINITIONS AND PROPOSITIONS.

The contents of this Chapter will consist chiefly of de-
finitions and statements of fact, which may conveniently be
introduced here, though partly belonging to a later stage of
the subject.

17. The word vihration may be used to denote any periodic

change of condition ; especially when, relatively to appropriate

standards of comparison, the change is small, and the period

short.

When a change is caUed periodic, it is in general implied

that a period is an interval of time of constant length, and that

whatever condition exists at any instant, is restored after the

lapse of a period.

Thus the series of changes which happen between any two

instants separated by a period, constitute a cycle which is con-

tinually repeated.

The particular stage of change which has been reached at

any instant is called tht phase of the vibration. And the vibra-

tion is said to go through all its phases in one period.

The period is also called the time of a vibration. It may,

and frequently does happen, that the changes in successive

periods grow successively less, though remaining similar in

character, while the period continues sensibly unaltered. Thus

when a string is put into a state of vibration and then left

to itself, the sound gradually dies away, but retains sensibly both

the same pitch and the same character as long as it is heard at

all. On the other hand, the period may change, as when the
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tension of a string is increased or diminished while it is

vibrating.

But when nothing is said to the contrary, it is always to

be understood that the period is supposed to be constant.

18. When a musical note (Art. 16) is heard in the ordinary

way, the air in contact with the tympanic membrane of the

ear is in a state of vibration. But it has been already seen

that the ear in general resolves a series of vibrations into

several component series having different periods, each of

which produces a simple tone with a determinate pitch.

The tone produced by the component vibrations of longest

period, being the lowest in pitch, and also in general the

loudest, is called the fundamental tone, and its pitch is usually

spoken of as the pitch of the note.

We shall, however, suppose at present that the vibrations are

of that kind which the ear does not resolve, so that only one

tone is heard; and proceed to state certain facts relative to

the connection between the pitch of the tone and the period

of the vibrations.

To avoid circumlocution, we may call the vibrations which

produce any particular tone the vibrations ofthe tone ; and the

period of the vibrations may be called the period of the tone.

19. If the period of the vibrations be too long, no tone

is perceived, but only a succession of distinct impulses which

affect the ear with a peculiar sensation different both from

noise and tone. If, on the other hand, the period be too

short, no sensation at all is produced; the sound is simply

inaudible.

Different observers have made various statements as to the

period of the slowest vibrations which produce a tone. But

it is certain that to all ordinary ears the perception of pitch

begins when the number of vibrations in a second is some-

where between eight and thirty-two. In experiments on this

point there is an uncertainty arising from the doubt whether

the tone heard is really fundamental, or only one of the

component tones having a shorter period than that of the

compound vibration. For it is certainly difficult and perhaps
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impossible so to arrange the experiment as to be quite sure that

the vibration is of that kind which the ear does not resolve.

The extreme limit in the contrary direction is known to

be diiferent to diflferent ears^- In general it is probable that

no tone is heard when the number of vibrations in a second

exceeds 40,000.

20. Difference of period causes a difference of pitch which

we describe by calling tones of shorter period higher, or more

acute, and those of longer period lower, or more grave.

The change of pitch which takes place when the period

is gradually altered, strikes us as having an analogy to the

gradual change of position of a moving point. Hence we say

that there is an interval between tones of different pitch.

Suppose P, Q, Ji are three tones, taken in order of pitch.

Then we say that the interval from F to Ji is the sum of the

intervals from F to Q and from Q to Ji; or briefly, that'

PJi = FQ+QJi.
So far as this we might go in many other cases of con-

tinuously varying sensation. For instance, we might speak of

the interval between two pains of the same kind, but of dif-

ferent intensities, and call one interval the sum of two others.

But in the comparison of tones we can make a further step

which we cannot make in the comparison of pains. For we

can compare with precision the magnitudes of two intervals.

The ear decides whether any interval P Q \% greater than,

equal to, or less than any other interval RS. How far this

faculty of comparing intervals is an absolutely simple and

ultimate property of the sense of hearing, it is not very easy

to decide, for reasons which will appear hereafter.

21. But however this may be, it is certain that the judgment

is made ; and it is a fact ascertained by experiment that any

interval P Q '\& judged to be equal to another interval R S,

whenever the periods (Art. 18) of the two tones F, Q, are to

' This appears to have been first observed by Wollaston. See his

memoir ' On Sounds inaudible by certain Ears,' Phil. Trans, for 1820,

p. S06. On the audibility of high tones, see Savart in Ann. de Cbim. el

de JPhys., t. 44, p. 337 ; on low tones, Helmholtz, p. 263.
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one another in the same ratio as the periods of the tones R, S.

The same proposition may of course be expressed by saying

that the intervals are equal when the ratios of the numbers of

^
vibrations in a given time are equal; for the periods are in-

1 versely proportional to the numbers of vibrations. Thus, if

P, Qhe produced by 200 and 300 vibrations in a second, and

Ji, S by 600 and 900, then the intervals P Q, R S are equal,

for 200 : 300 : : 600 : 900.

22. In general, if a tone P be produced by / vibrations in

a second, and another tone Q \>y q vibrations, the ratio -
P

determines the magnitude of the interval PQ; for it follows

from the proposition of Art. 21 that no interval can be equal

to P Q unless the numbers of vibrations of its tones have

the same ratio.

But although this ratio determines the interval, it cannot be

taken as a measure of the interval, as we shall now shew.

Suppose Q is higher than P, and let 72 be a third tone

higher than Q, having r vibrations in a second. Then the

interval PR is the sum of the intervals P Q, QR; and there-

fore any number taken as a measure ol PR ought to be the

sum of the numbers taken by the same rule as the measures of

q r rP Q, QR. Now the ratios -, -, -, which determine the three
p q p

intervals P Q, QR^ PR, do not fulfil this condition, foror. , r
-H— IS not equal to -.

P S P
But if we take for the measure of an interval, not the ratio

of the numbers of vibrations, but the logarithm of that ratio,

f Of
the required condition is satisfied ; for - = - x -, and there-

r P P 9
fore the logarithm of - is the sum of the logarithms of -

, r P P
and -.

23. If then p, q be the numbers of vibrations, in a given

time, of two tones P, Q, the logarithm of - may properly be

taken as a numerical measure of the interval P Q. And in
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order to compare the magnitudes of different intervals we must

compare, not the corresponding ratios, but the logarithms of

those ratios. The base of the system of logarithms may be

any whatever. In fact the choice of the base merely de-

termines what interval shall be represented numerically by

unity, since the logarithm of the base is i in every system.

Thus, if we took 2 for ^ the base, we should have log 2 = 1;

and therefore i would be the measure of the interval which

has 2 (or f) for the ratio of the vibrations of its tones. In

other words, the octave (see Art. 31) would then be the unit-

interval. There would be some advantage in this; but prac-

tically it is convenient to use the common logarithms, of which

the base is 10.

24. Though the ratio - cannot be used as a measiure, it

P
is often convenient to use it as the name of the interval P Q.

When it is so used we shall inclose the fraction in brackets

-) ;' the brackets being intended to remind

the reader that the measure of the interval is not -, but

log t.

25. The interval between two tones P, Q, may, like the

interval between two points in a line, be reckoned in two

opposite ways, namely, from P to Q, or from Q io P ; and this

difference will henceforth be indicated by calling the same

interval P Q ox QP accordingly.

And if we introduce the signs + and — in the same way

as in modern elementary Geometry, it is evident that the rules

for the addition and subtraction of straight lines (in the same

direction) may be applied at once to the addition and sub-

traction of intervals. Thus, QP=-PQ,oxPQ + QP = 0.

And if P, Q, R be any three tones whatever, then

PR = PQ + QR = QR- QP;
^•nd PQ+ QR + RP = 0, &c.

26. In designating any interval by the corresponding ratio

as a name, we shall put that number in the denominator which

c
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Addition and Subtraction.

is proportional to the number of vibrations producing the tone

from which the interval is reckoned.

Thus, ' the interval (|) ' will mean P Q, while ' the interval

(-)' will mean QP.

Then also log ^ being taken as the measure of P Q, log ^ ,

P ?

will be the measure oi QP with its proper sign; for log

^- = -logf. ,

The equations - = ix-, - = --=--, compared with

PR = PQ+ QR, PR = QR— QP, shew that addition

and subtraction of intervals correspond to multiplication and

division of ratios ; the words addition and subtraction being no

longer restricted to their arithmetical sense, but used in the

same way as in the geometry of a straight line.

In fact this is only another way of saying that the logarithm

of the ratio is a proper measure (both as to magnitude and

sign) of the interval.

It follows, from the conventions above made, that those

intervals are to be considered ^positive which are reckoned from

a lower to a higher tone ; since the logarithm of a ratio greater

than unity is positive.

27. It will be a convenient abridgment to call the ratio

which determines an interval the ' ratio of the interval,' though

the expression is in itself unmeaning.

28. The interval between the lowest and highest audible

tones is theoretically capable of unlimited subdivision by the

interposition of intermediate tones, though there is a limit

to the power of the ear to distinguish nearly coincident tones,

as there is to the power of the eye to distinguish nearly co-

incident tints.

A series of tones at finite intervals, selected aceording to

some definite law, is usually and appropriately called a scale

;

for the selected tones are the steps of a ladder by which we
ascend from a lower to a higher pitch.

A scale formed by taking an unlimited succession of tones,
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produced by vibrations of which the numbers (in a given time)

are proportional to i, 2, 3, 4, &c. is called the scale ol Natural
Harmonics. We shall henceforward refer to it simply as ' the

harmonic scale.'

The different notes which can be produced from a simple

tube, used as a trumpet, belong to a scale of this kind. And
each note of the trumpet, of the human voice, of a vibrating

string, in short every musical note produced in any of the most

usual ways, is compounded of simple tones also belonging to

a harmonic scale. The explanation of these facts on me-
chanical principles will be given afterwards; at present we
state them as a reason for giving here a general view of this

primary and fundamental scale.

29. The absolute pitch of the lowest or fundamental tone

may be any whatever. If we choose the thirty-third part of

a second for the period of this tone, it will have the same pitch

as the lowest C of a modern pianoforte, according to a standard

now very commonly adopted ^- (If we chose a different period

we should of course merely transpose the scale without altering

the intervals.)

The series of tones will then begin as follows :1234567 89
s mI22Z

d'

C,

10

G

11 12 IS 15 16

-fri^- Bs^- IC2 &c—

:

*
g'

*
a'

*
bb' b'

The numbers written above the notes are the numbers of

vibrations in the thirty-third part of a second.

' This is the German pitch,

standard.

In -England there is at present no uniform

C 2
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Those notes which are marked with an asterisk do not

exactly represent the corresponding tones, but are the nearest

representatives which the modern notation supplies.

30. The letters below the notes are, with a slight alteration,

those used by German writers. In this • system of notation, C,

.

D, E, F, G, A, B, represent the seven notes beginning with the

second C (reckoning upwards) of a modern pianoforte, or the

lowest note of a violoncello.

The octaves above these notes are represented by the small

letters Cj d, e, f, g, a, b. Thus, c is the lowest note of a viola,

and the lowest c of a tenor voice ; and g is the lowest note of

a violin.

Higher notes than b are represented by putting accents above

the small letters; and lower notes than C by putting accents

below the capitals. Each accent above a small letter raises the

tone by an octave ; and each accent below a capital lowers the

tone by an octave.

Thus, g" is the highest g of an ordinary soprano voice, C, is

the lowest C of a modern pianoforte, and C„ is the so-called

32-foot C of an organ. The compass of the newest piano-

fortes is from A„ to a"", &c.

As we shall use this notation for the future, the reader is

recommended to become familiar with it.

(German writers use h instead of our b, and b instead of

ourt'b.)

31. The intervals between the several tones of the harmonic
scale have in a few cases received names derived from the

places of the tones in the diatonic scale (Art. 35).

The most important of these intervals, with their ratios, are

:

Octave C C
Fifth c' _ G
Fourth G c

Major third c e

Minor third e g

g — bb*

bb* — c'

T
3

4
'S

5
T

7

8
T



of Important Intervals. 2

1

Major second c' — d'

Minor second d' —=- e'

Diatonic semitone . . , . b' — c"

8

is.
15

The two intervals (|^), (f) are not formally recognized in

modern music, though they are probably often used both by

singers and by players on instruments not restricted to a finite

number of notes.

The major and minor second are often called major and

minor tones; but it is desirable to avoid the use of the word

tone in two senses. Other intervals (such as the sixth, &c.),

formed by addition and subtraction of those in the above list,

may be omitted for the present.

32. The second and all following tones of the harmonic

scale are often called the ' harmonics' of the first or funda-

mental tone. The second tone is the first harmonic, the third

tone is the second harmonic, and so on.

If we take any tone of the harmonic scale as a new funda-

mental tone; the whole series of its harmonics will be found in

the original scale.

Thus the series 3, 6, 9, 12 . . . ., gives the harmonic scale of

the third tone ; and in general the series

n, 2w, 3«, 4«, ,

gives the harmonic scale of the «th tone.

33. Omitting for the present any discussion of the character

of other intervals, we may here notice a peculiar property which

distinguishes the first interval in the harmonic scale, the octave.

When we compare two tones which differ by an octave, we are

affected by a certain sense of sameness, which we do not feel in

the case of any other interval unless it be a multiple of an

octave. A supposed explanation of this property will be dis-

cussed hereafter; but, whether it be. explicable or not, it entitles

the octave to be regarded as a natural unit (see Art. 23) with

which other intervals may be compared. At the same time it

gives a periodic character to the scale : every tone which has

occurred once seems to occur again and again at equal in-

tervals.
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34. If we compare the intervals into which any two succes-

sive octaves of the harmonic scale are divided, we see that

every interval between consecutive tones in one octave is divided

into two intervals in the next higher octave.

The law of this subdivision is worth observing. The ratio

of the interval between consecutive tones is always of the form

«_±i. „ow ^+^ = ^^±^ = ^^^ X ^^^'; in other

y.« + In.
. , . ,

words (see Art. 26) the interval \ „ ) »s the sum of the

two intervals ( \ (,^ , A and it is in fact divided

into these two in the next higher octave; for in that octave

occur three consecutive tones corresponding to the numbers

zn, zn + 1, zn + z, of vibrations.

Thus, the first octave, C,— C, is undivided. The second

octave, C— c, is divided into a fifth and a fourth,

2 _ 4. _ 3 V *-
T - ^ - 2, '^ 'S-

In the third octave the fifth, c— g, is divided into a major

and a minor third, f = f = f >^ t >

.whilst the fourth, g— c', is divided into two interyals, (•^), (f),

which have not received names. In the fourth octave the major

third, c'— e', is divided into a major and a minor second,

5 _ 10 _ 9 V 10
1 - S ~ 'S ^ ff

•

Thus every interval is divided into a major and minor half (if

the word half may be so used), according to a law which may

be called the law of natural bisection, the major half being

always the lower.

35. The theory of artificial scales cannot be discussed here

;

but it will be useful to state, without reference to theory, the

actual construction of the modern diatonic major scale. If we

take two tones at an interval of a fifth, and the intermediate

tone which bisects the fifth naturally (Art. 34), for example,

c, e, g, we obtain three tones which when sounded together

produce a triad or common chord. And if we take three such

triads one above another, so that the highest tone of the first

is the lowest of the second, and the highest of the second the
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lowest of the third, we obtain seven tones, rising one above
another by alternate major and minor thirds, thus

:

F — A — c — e — g — b — d'
6. e. 6 e 5 8
4 6 T 6 ¥ T

Lastly, if we take the lowest tone (c) of the middle triad as

the so-called ionic or first tone of the scale, and bring all the

other tones within the compass of an octave by substituting f,

a, d, for F, A, d', we obtain the seven tones of the diatonic

scale, to which an eighth (viz. c', the octave of the tonic) is

usually added, thus : c, d, e, f, g, a, b, c'.

Returning, however, to the above system of triads, let us find

the ratios of the intervals from the lowest tone, F, to each of

the other tones. This will be done by successive multiplication

of the ratios |, f, &c. (Art. 26), and thus we obtain the fol-

lowing ratios for the intervals

:

F, A, c, e, g, b, d'.

1 6 3 1594S27
T> T» ?> F > T> Tff) ¥ •

n.

Here the ratio written under each tone is that of the interval

from F to that tone.

If we reduce all these fractions to the least possible common
denominator, viz. 16, the numerators will be the smallest whole

numbers proportional to the numbers of vibrations of the cor-

responding tones, thus

:

F, A, c, e, g, b, d'.

16, 20, 24, 30, 36, 45, 64.

Recollecting now that the number of vibrations of f is double

that of F, &c., we obtain the following series for the diatonic

scale

:

c, d, e, f, g, a, b, c'.

24, 27. 3o> 32, 36, 40, 45> 48-

36. The tones of the diatonic scale have all received technical

names, of which it is sufficient to mention three, viz. the tonic

or first tone of the scale, the dominant or fifth tone, and the

subdominant or fourth tone. Thus, in the above scale c is the

tonic, g the dominant, and f the subdominant.
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37. The tones of a diatonic scale, having for their actual

fnumbers of vibrations those given at the end of Art. 35, belong

) evidently to the harmonic scale (Art. 28), of which the funda-

mental tone has one vibration. This fundamental tone is five

octaves below the subdominant, for \^ = (f
)°.

~ Hence, neglecting the difference between tones which differ

by a whole number of octaves, we may say that the diatonic

scale is selectedfrom the harmonic scale of its subdominant.

This proposition is to be understood merely as the statement

of a mathematical fact, and not as involving any theory of the

actual derivation of the scale.

The diatonic scale can only be represented in whole num-

bers when the number of vibrations of its tonic is divisible both

by 3 and 8.

Hence we may say that any harmonic scale contains the

tones (or their octaves) of the diatonic scales of all those

amongst its tones which correspond to multiples of 3, and of

no others.

The series of multiples of 3, viz. 3, 6, 9, 12, ... ., gives a

harmonic scale which has for its fundamental tone the third

tone of the original scale.

Thus, every harmonic scale may be said to contain the

diatonic scales of its third tone, and of all the harmonics of

that tone.

38. Returning now to the series of whole numbers which

represent the diatonic scale (Art. 34), we find for the intervals

Detween successive tones of the scale the following ratios

:

ff = f • (major second).

1^ =~V' (minor second).

14 = TT (diatonic semitone),

f

I

= f (major second).

If = V* (minor second),

rf = f (major second).

rf = XT (diatonic semitone).

39. In this scale the octave is divided into two so-called

tetrachords, c, d, e, f
; g, a, b, c', separated by the major second

c . .
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f g. These tetracLords are nearly, but not exactly, alike;

for the intervals in the lower and upper tetrachords are :

(lower) major second, minor second, semitone

;

(upper) minor second, major second, semitone.

Hence, the upper tetrachord of the scale of c is not exactly

identical with the lower tetrachord of the scale of g ; for the a

in the latter scale is a major second above g, and in the former

a minor second only. The^ a of the scale of c is therefore

flatter than that of the scale of g by the difference between

a major and a minor second. This difference is called a

comma; and the ratio of a comma is (Art. 26)

9 _j_ 10 _ 81
"5"

• 9 - F(7-

A comma is nearly equal to the fifth part of a diatonic semi-

tone ; for (f^)' is nearly equal to ^.
These details belong more properly to another chapter ; but

they have been given here in order to shew at once, by a simple

example, the imperfection of the ordinary musical notation for

all but practical purposes. The letter a and the note (m);
'^—

are made to serve for the scales both of c and g, to
^^

say nothing of other scales; whereas in fact the letters, as

ordinarily used, and the notes on the stave, are capable of

representing accurately one diatonic scale and no more.

The whole structure, however, of modern music is founded

on the possibility of educating the ear not merely to tolerate or

ignore, but even in some degree to take pleasure in, slight

deviations from the perfection of the diatonic scale.

40. The relation between intervals and numerical ratios

may be illustrated by the curve called the logarithmic (or equi-

angular) spiral. This curve (see Fig. 5) consists of convolu-

tions, of which the number reckoned from any point, either

inwards or outwards, is infinite. Inwards, the curve approaches

continually nearer to a point (called the pole), which it never

actually reaches; Outwards, it recedes from the pole without

limit. These two properties are common to many spirals.

But the curve in question has this particular property, that if

straight lines be drawn from the pole to any two points on the
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curve, the logarithm of the ratio of their lengths is proportional

to the angle between them. It follows (Art. 23), that if the

lengths of any two such lines, as A, OJB,he taken to repre-

sent numbers of vibrations in a given time, the angle A OS
may be taken as a measure of the interval between the tones

produced by those vibrations.

'J}.

v5'

y'
T?"

Fig. 5-

The curve can be so drawn, and is so drawn in the figure,

that a complete revolution' doubles the distance from the pole.

Thus, Oa is double of OA, and Od of Oa, Sec; so that a

point, starting from A and following the curve outwards, doubles

its distance from whenever it crosses the line A produced,



of Scale. 27

that is, whenever it completes a revolution. But, when the

number of vibrations is doubled, the tone is raised an octave.

Hence the angle described in a complete revolution, that is,

four right angles or 360°, represents an octave; and any frac-

tion or multiple of four right angles represents the same fraction

or multiple of an octave.

We may, therefore, consider a point, following the curve

outwards, to represent a tone continually rising in pitch ; and

successive passages of the point through any given line drawn

from the pole will represent passages of the tone through suc-

cessive octaves. Thus the geometrical periodicity of the curve

presents to the eye a sort of picture of the periodicity perceived

by the ear in a continuously rising tone.

The angles representing the intervals used in the diatonic

scale cannot (with the exception of the octave) be exactly

expressed in degrees, minutes, and seconds ; but, to the nearest

second, they are as follows^

:

Octave 360 o o

Fifth 210 35 II

Fourth 149 24 49

Major third "S S3 38

Minor third 94 41 33

Major second 61 10 22

Minor second 54 43 16

Diatonic semitone . . . . 33 3^ ^^

(Comma) 6 27 6

^ The equation to the curve is r = a . 2
^
" ; hence, if r, r' , be two radii nec-

tores in the ratio oim.n, we have

m 2jr .— = 2 y

n
log m — log n

hence «-"='"T^T^ =

which gives the angular measure of the corresponding interval. Thus, for

the fifth, — = -
; hence the angle (in degrees) is

log 2

The angles being known for the fifth and the fourth, the rest of those which

occur in the diatonic scale can be found by addition and subtraction.



28 Division of Octave into Atoms.

41. In Fig. 5 the letters represent the tones of three octaves

of the diatonic scale. It may be observed that the same figure

might be used to represent a descending instead of an ascend-

ing scale. The distances from the pole would then be pro-

portional to the periods of the tones, or (as will be s^ewn

hereafter) to the lengths of the strings, of given kind and given

tension, which produce them. : The angles would then have to

be taken in the reverse orden

42. A more usual mode of representing intervals graphically

is by parts of a straight hne, of which the whole is assumed to

represent an octave. When this method is adopted it is con-

venient to divide the octave line into equal parts, of which the

number is approximately the product of some power of i o by

the logarithm of 2. Thus, if we divide it into 3.01 parts (301

being 10' x log 2 nearly) the logarithm of the ratio defining

the interval measured by n divisions will be, approximately,

ft

. Conversely, the number of divisions representing any

interval will be 1000, multiplied by the logarithm of the ratio

of that interval. Thus, a comma will be represented by

1000 X logf^= 5 divisions nearly.

A division on this scale corresponds to something more than

a degree on the scale described in Art. 40. Dr. Young divided

the octave into 30,103 parts, and Mr. De Morgan has proposed

to call each of these parts an ' atom.' An atom would be very

nearly equal to 43" on the scale of Art. 40. (See De Morgan,
' On the Beats of Imperfect Consonances,' Camb. Phil. Trans.

vol. X. p. 4.)



CHAPTER III.

COMPOSITION OF VIBRATIONS.

43. The simplest type of periodic motion is afforded by a

point describing a circle with a constant velocity. For this is

the only kind of motion in which the velocity and the change

of direction are both uniform.

Such a motion may be considered as the simplest possible

vibration of a point (Art. 17). We shall call it, for the present,

a simple circular vibration.

44, The vibration of a point, in its most general form, may
be defined as motion in a curve which returns into itself, with

a velocity which is always the same at the same point of the

curve.

Suppose the curve to be plane, such, for instance, as in

Fig. I. Draw arbitrarily any

two axes, OX, OF. (It is im-

material whether they meet

the curve or not). From P,

the position of the moving

point at any time, draw P M,
PN, parallel to OF, OX.
As P moves round and round

the curve, the point M will

movebackwards and forwards

in the line O X with a pe-

riodic rectilinear motion; that

is, .^will perform rectilinear

vibrations. In the same way N will perform rectilinear vibra-

tions in OF.
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The curvilinear vibration of P is said to be compounded of the

rectilinear vibrations ofM and N.

In fact, if we consider P as a point displacedfrom 0, the dis-

placement OP is compounded of the two displacements M,

N, in the sense explained in Art. 9. It is evident that any

given vibration of a point in a plane may in this manner be

. resolved into two component rectilinear vibrations, in an infinite

variety of ways ; and the character of each component depends

in general upon the directions of both the axes.

When nothing is said to the contrary, it is assumed that the

axes are rectangular. In this case PM is perpendicular to

OX ; and the vibration of M (the orthogonal projection of P)

is then called absolutely the rectilinear component, in the direction

O X, of the vibration of P.

45. Any vibration of a point, whether plane or not, may be

similarly resolved into three component rectilinear vibrations by

taking three arbitrary axes, OX, OF, O Z. The point M, in

O X, is then determined by drawing PM parallel to the plane

YO Z. The projections of P on J^ C Z, are to be found in

the same way, mutatis mutandis.

46. We will now return to the case of a simple .circular

vibration (Art. 43). Such a vibration is completely determined

when four things are given

:

(i) Th& period, or time of describing the whole circle.

(2) The radius of the circle.

(3) The position of the moving point at some one given

instant.

(4) The direction of motion (whether right-handed ^^^^, or

left-handed i^^"^).

The phase of the vibration is defined by the angle between

an arbitrary fixed radius and the radius of the moving point at

any time.

Hence, the third of the above data may be expressed by
saying that the phase is given at a given instant. The fourth

datum will seldom have to be referred to.

Through the centre of the circle (Fig. 2) draw any two
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rectangular axes, OX, OF, and from P, the position of the

moving point at any time, draw P M, P N, perpendicular to

the axes. (The origin is taken at the centre for convenience,

but it might be any-

where.) Then, as P de-

scribes the circle with a

uniform motion, M vi-

brates in the line A A',

and iVin ££', and it is

evident that these two-

rectilinear vibrations are

perfectly similar.

Vibrations of the kind

performed by M or N,
that is, rectiUnear com-

ponents of simple cir-

cular vibrations, are dis-

tinguished by many re-

markable properties, and may properly be considered as the

simplest kind of rectilinear vibrations. This will appear more

clearly as we proceed.

47.' Let an arbitrary radius, K, be taken as a fixed direc-

tion from which to measure the angle 6 (01 K O P) described

by OP, and suppose the direction of the motion to be such

that 6 increases with the time. Then, putting a for the radius

of the circle, and a for the angle K A,\iq have

ON = a sin {6 + a).

Suppose the time, /, is reckoned from the instant of a pas-

sage of P through K, and let t be the period of the vibration,

or time of describing the whole circumference. Then the time
a

of describing the arc ^P is —t, and when the moving point

e
is at P the value of i must be /= — 7- + «r, n being some

2 IT

whole number ; whence we have 6 = 2 « jr. Intro-
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ducing this value of 6 in the above value of N, and putting

N = y, we find

J/ = a sin ( ha) (

)

as the equation which determines the position of N at the

time /.

In like manner, putting M = j;, w6 should find

'2 TT /
X = a cos (^S a); (.)

and, if the latter equation be put in the form

'2 tt/
X = a^vx +- + a),

T 2 ^

it is seen that both (i) and (2) represent vibrations,of the same

kind, but that x andj' take the same values at different times.

In fact, the value of x at time t is the same as that of^ at time

f
i -\— , so -that the first vibration may be said to be a quarter

4
of a period behind the second.

48. Vibrations of the kind considered in the last article,

namely, rectilinear vibrations in which the displacement of the

moving point at the time / can be represented by an expression

of the form

"z IT i(i:Li+„), (3)a sm
' T

may be conveniently called rectilinear harmonic vibrations.

The constant a is called the amplitude, because its value is

that of the greatest displacement.

The angle 1- a is called the phase of the vibration.

The constant a is therefore known if the phase at any given

time be given.

49. A rectilinear harmonic vibration can be resolved into

two others of the same kind in an infinite variety of ways.

Usually the directions of the two components are taken at right

angles to one another. In this case the component of (3)
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(Art. 48), in a direction making the angle a with the direction

of (3), is evidently

h ay

Composition of Vibrations.

50. Rectilinear harmonic vibrations may be compounded

according to the general law of the superposition of displace-

ments explained in Art. 9. The two cases of most importance

are those in which the two vibrations to be compounded are,

(i) in the same direction, (2) in directions at right angles to

one another.

First, then, let the vibrations be in the same direction; in

this case the resultant displacement is simply the algebraical

sum of the component displacements. If the component vibra-

tions be represented by the expressions

(Ivt V ,2 IT i ^
h

«J , b sin y—, h P) ,

the resultant displacement wiU be represented by the sum

,2 TT / V /lit t «

a sin (-^ + °) + 3 sin (-^^ + /3).

This expression is periodic if the periods r and t be com-

mensurable ; for its value will then evidently be unaltered if /

be increased by any common multiple of t and t'. But it does

not in general admit of any useful reduction.

If, however, the periods r, t', of the component vibrations be

equal, the resultant motion is itself a harmonic vibration having

the same period. For in this case the above expression may

be written in the form
27r/ .. »•^^ iv t

(a cos a -H 3 cos /3) sm h (« sm a -|- 5 sm /3) cos ;

T T

and this is identical with

provided A and B be so taken that

A cos B = a cos a \- h cos 3,

.(4 sin 5 = a sin u + 3 sill ^,

D
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which equations are satisfied by

A = v/a^ + i5^ + 2 a 3 cos (a — ^),

„ , « sin a + 3 sin ^B = tan-i —7 ~,
a cos a -\- b cos j3

where we may suppose the square root to be taken posi-

tively.

The value of A, the amplitude of the resultant vibration,

depends both on the amplitudes a, I, of the component vibra-

tions, and also on the angle a~*~^, which is the difference oftheir

phases.

If a — /3 = o, the component vibrations are always in the

same phase, and A = a -^ b; ox the amphtude of the resultant

is the sum of the amplitudes of the components.

If a -»- ;3 = !r, one of the component vibrations is half a

period behind the other, and A = a~^ b; or the amplitude of

the resultant is the difference of amplitudes of the components.

In this latter case, if a = 3, then A = o, and the component

vibrations completely destroy one another.

51, Next, let the component vibrations be at right angles to

one another, and let their periods be r, t; putting for conve-

2 TT 2 !r , , , 1

nience — = », —^ = « , we may represent them by the equations
T T

X = a sin (ni + a), y = b sin («7 + /3),

and these are the co-ordinates, at the time t, of the moving

point (see Art. 48).

The equation to the locus of the point would be found by

eliminating / between these two equations. The elimination

can, theoretically, be performed so as to lead to an algebraical

equation between x and y, whenever t and t are commen-
surable, though the process is impracticable except in simple

cases.

The simplest case of all is that in which the periods of the

component vibrations are equal. We have, then, to eliminate

t between the two equations

X = asia. {nt + a), y = i sin (»/ + /S)
; (4)
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from them we have

X
cos a sin nt + sin a cos ni = —

,

a

y
COS ^ sm «/ + sm (3 cos nt =^ ;

and if the values of sin nt, cos «/, be found from these equa-

tions, and the sum of their squares be equated to 1, the

result is

? ''i^
~ ^3 ^°^ (° - ^) - sin^ (a - ^) = o. (6)

52. This equation always represents an ellipse, which may
however degenerate into a circle (when the axes are equal), or

a straight line (when the length of one axis is o).

The dimensions and position of the ellipse depend only on

the amplitudes {a, b) and the difference of phases (a -»~ |3) of

the component vibrations. If the component vibrations are

always in the same phase, that is, if a — /3 = o, the equation

becomes

and the ellipse degenerates into a straight line, or, more strictly,

into two coincident straight Unes. Again, if a -»~ ^ = jr, that

is, if one of the component vibrations be halfz. period behind

the other, the equation becomes

/X Vsf

and the locus is again a straight line.

If a -»- 13 = -, or — , that is, if one component be a quarter

of a period behind the other, the equation becomes

x^ y^

arid the axes of the ellipse coincide with the directions of the

component vibrations.

53. It is evident from equations (4) that the ellipse described

D 3
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by the vibrating point is always inscribed in a rectangle, of

which the sides are 2 a, 2 b, since the extreme values of x and

J/ are + a, + ^ (see Fig. 3). This may be formally proved

from equation (5) ; for if in that equation we put y = h, the

result is

2

(- — cos (a — /3)) = O,

shewing that the ellipse meets the line_y = 3 in two coincident

points (as at Q), of which the abscissa is a cos (a — ^). Simi-

larly, by putting x = a,^Q find b cos (a — ^) for the ordinate

of the point of contact R.

When u = ft ^ and R coincide at C, and the ellipse dege-

nerates into the diagonal CC; and when a~^ ^ = jt, it degene-

rates in hke manner into the diagonal DD.
An ellipse inscribed in a' given rectangle is completely deter-

mined if one point of contact be given. Hence, it follows that

if the angle a — /3 varied continuously from o to tt, the ellipse

would pass continuously through every form capable of being

inscribed in the rectangle DCD C, including the two dia-

gonals as extreme cases.

54. Let us now suppose BB (Fig. 3) to be the axis of a

cylinder, of which DC, CD are the circular ends seen edge-

wise by an eye placed at a distance in a line through per-
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pendicular to the plane of the paper. Suppose also the cylinder

to be transparent, and to have marked on its surface the trace

of a section made by a plane touching' the circular edge of

each end. This section would be an ellipse, which, as seen by

the eye, would be orthogonally projected into another ellipse

inscribed in the rectangle D CD C . And if the cylinder were

turned uniformly about its axis, this inscribed ellipse would

evidently go through all its possible forms in such a manner

that the distance B Q would be equal to a multiplied by the

cosine of a uniformly varying angle.

Comparing these results with those of the last article; we see

that this construction gives a perfect representation of the

change undergone by the ellipse which is the resultant of two

rectilinear harmonic vibrations at right angles to one another,

when the difference of phase of the component vibrations varies

uniformly ; the angular velocity of the rotating cylinder being

equal to the rate of variation of the difference of phase, (For

BQ = aco%{a-^)).

55. A similar construction may be employed in the much

more general case of any two rectilinear vibrations of which

the periods are commensurable, and of which one, at least, is

harmonic ; a case which could rarely be treated algebraically

(Art. 50).

For the sake of clearness, let us suppose the direction of the

harmonic vibration to be horizontal, or in the axis of x. This

vibration will therefore be represented (Art. 47) by an equa-

tion of the form

X = asm ( + a) • (6)

Let/ denote any periodic function, which is always finite,

and such that/"(3) =/{z + 2,ir). Then the vertical vibration

may be represented by an equation of the form

. y-/C-^ + ^). (7)

Let us also suppose the ratio of the periods t, t to be such that

fiT = MT, m and n being integers.

Now let a curve be drawn in which the abscissa of any point
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is proportional to the time /, and the ordinate is the corre-

sponding value of _y givep by equation (7). (Fig. 4, in which

AB = T, may be taken to represent two periods of such a

curve.) And suppose the unit-line to have been so chosen

Fig. 4.

that a line equal to n x AB shall be equal to m times the

circumference of a circle of which the radius is a. If, then,

a rectangular slip of paper were cut out, containing exactly

n periods of the curve, it could be rolled m times round a

cylinder of radius a. We should thus obtain a complicated

curve on the ..surface of the cylinder. Suppose the whole to

become transparent, and to be viewed in the manner explained

in Art. 53; then if a point P were to describe the curve in

such a manner that the projection of F on the base of the

cylinder should describe the circumference of the circle uni-

formly, the horizontal motion of P, as seen by the eye, would

be a harmonic vibration, while its vertical motion would be

identical with that defined by equation (7). Moreover, m hori-

zontal vibrations would be completed in the same time as «

vertical vibrations.

Hence the apparent co-ordinates of P would be always iden-

tical with the values of x and y in equations (6) and (7), pro-

vided the cylinder were turned (if necessary) about its axis into

such a position as to give x and y corresponding values at any

one instant ; and thus we should get, as before, a perfect repre-

sentation of the resultant vibration.

56. An alteration in the value of either of the angles a or /3

(equations (6), (7)) would alter the time at which the corre-

sponding vibration passes through a given phase, and cause

different values of x andj/ to become contemporaneous. And
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the same effect would be produced to the eye by turnmg the

cylinder about its axis into a new position.

Thus, if a were changed into a + c, the effect would be the

same as if the cylinder were turned backwards (that is, with a

motion contrary to that of the projection of P) through^ an

angle e, since in either case the passage of the horizontal vibra-

tion through a given phase would be accelerated by a time — r.

A retardation of the vertical vibration would have the same

effect as an equal acceleration of the horizontal vibration ; now,

if /3 were changed into ^ — c', the retardation would be — /,

and this would be equal to the former acceleration, if e'r' = c r,

T
or f = - f

.

T

Hence, a change of /3 into |3 + e' is equivalent to a change

of a into a H— e', that is, to a turning of the cylinder backwards
T

through an angle - c', or - e'.

r n

57. Since the curve rolled on the cylinder consists of n

similar portions, the angular distance between corresponding

. 2 n-

pomts on two consecutive portions is ^.

Hence, if the cylinder were turned continuously, .the pro-

jected curve seen by the eye would go continuously through

all its possible forms during a rotation of the cylinder through

2 TT

the angle —

.

n

We see also that a uniform variation either of a, or of /3,

would have the same effect as a uniform rotation of the

cylinder^.

58. The results obtained in Arts. 52-55 may be exhibited

to the eye. But before explaining the mode of doing so, we

> This mode of representing stereoscopically tliejiomposition of vibrations

is due to M. Lissajous. See his memoir ' Sur I'Etude optique des Mouve-

ments vibratoires,' 4nn. (fe C*. «/ £?e Piys., t. 51, p. 147.
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will consider the case in wHich the ratio of the periods of the

two vibrations is nearly, but not exactly, expressed by a given

numerical fraction.

Suppose then, as before, that t, t are given constant quan-

tities, such that niT = m' (the ratio m : n being in its lowest

terms). And suppose that the vertical vibration is the same

as before (see equation (7), Art. 54), but that' the horizontal

(harmonic) vibration is now defined by the equation

X = a sin(— (i + k)t + a\,

so that its period is no longer t, but , which will differ
I + «

slightly from t, if ^ be a small quantity, positive or negative.

If now we put a H / = a , the above equation becomes

X = a sm( 1- a\,

and the result of eliminating / between this last equation and (7)

would be the same as before, except that a would be changed

into a, that is, into a uniformly varying instead of a constant

quantity. We may, therefore, consider that the vibrating point

still describes the curve (8), but that the curve is disturbed by

the variation of u, just as we consider a planet to describe an

ellipse disturbed by the variation of one or more of its ele-

ments.

59. It has been seen (Art. 57) that a uniform variation

of a would have the same effect as a uniform rotation of the

cylinder with an angular velocity equal to the rate of variation

of a, that is, in the case now supposed, to ; and also that

the curve, as seen by the eye, would go through all its forms

while the cylinder turned through an angle —. Hence the
n

curve would go through all its forms in a time equal to

— -«-
, or -T. Suppose that M,N, are the actual num-n T ft fi
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bers, in a unit of time, of the horizontal and vertical vibrations

;

, .. 1 + k , ,- I n
thenM = , and iV^ = - = — .

T T mr
Now the number of complete cycles of change of the curve

in the unit of time is — , and this is equal to
T

nM— mN. (9)

This expression is worthy of remark, especially in connection

with the theory of the so-called beats of imperfect consonances,

as will appear afterwards.

The sign of nM— mN, being the same as that of k, is

positive or negative according as the ratio M : N \s greater or

less than m : n. In the former case, the rotation of the cylinder

is backwards ; in the latter, forwards.

In the particular case in which the periods of the vibrations

are nearly equal, or m = n = \, the expression (9) becomes

simplyM— N. Or the number of cycles of change in a unit

of time is the difference of the actual numbers of vibrations.

60. The two Figures, 5, 6, illustrate the case in which both

vibrations are harmonic and have the same amplitude, while

Fig. 5. Fig. 6.

the periods are such that two horizontal vibrations occupy the

same time as three vertical. Suppose 3T, 2t, are the two

periods ; then the curve in Fig. 5 is defined by the equations

. ini . ""

t

X = a^va.—
,

V = fl sm—

,

3r T
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while in Fig. 6 the first equation is changed into

. /2 IT t 7r\
X = a sin ( I

.

V 3T 6^

(The origin is in each case at the centre of the square).

These two curves are particular cases of the appearance

presented to the eye by a transparent cylinder having a curve

traced upon its surface in the manner above described, that is,

in the present case, as follows. Let three complete ' waves,' or

periods of the curvej/ = a sin -— , be drawn upon a rectangular

slip of paper, so that the axis of x is parallel to a side of the

rectangle; the length of a rectangle which will just contain

them will be 4 tt a, and such a rectangle can therefore be rolled

twice round a cylinder of radius a. Suppose this to be done,

and the whole to become transparent. Then, if the cylinder be

held vertically at a distance from the eye, and turned about its

axis, the curve will appear to go through a series of forms of

which two are represented in the figures. Fig. 5 is changed

into Fig. 6 by a rotation through 30°; a second rotation through

30° brings back Fig. 5, with those parts of the curve va.front of

the cylinder which were at the back, and vice versd; a third

similar rotation produces Fig. 6 reversed right and left, and a

fourth reproduces the original Fig. g. Thus a whole cycle of

forms is completed in a rotation through 120°, or — (see

3

Art. 57). A greater number of the forms belonging to this

and other cases of composition of vibrations may be seen

figured in Tyndall's ' Lectures on Sound,' p. 319. They were

originally given in the memoir of Lissajous above cited.

61. If the periods of the component vibrations were nearly,

but not exactly, in the ratio of 3 to 2, then (as in Art. 58) the

locus of the vibrating point might be represented by the equa-

tions

. (Iirt ,\ . tt/X = fl sm 1 ha), _>< = a sin —

,

3'' T

where a is an angle which varies slowly and uniformly with

the time.
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In this case the path of the point never actually coincides

with any curve corresponding to a constant value of d, just as

the path of a disturbed planet is never actually an ellipse ; but

if the variation of d be suflSciently slow, the path during one or

more repetitions of the period 3 t will be sensibly the same as

if d were constant, and during a longer time will appear to

undergo a continuous change through all the forms corre-

sponding to constant values of d, that is, through all the form$

presented by the curve on the rotating cylinder.

62. These phaenomena may be exhibited by various con-

trivances, of which the simplest is the > kaleidophone. This

instrument, invented by Wheatstone and improved by Helm-

holtz, consists of two thin and narrow rectangular slips of steel,

or other elastic material, joined together in such a manner that

their longitudinal central axes are in the same straight line,

while their planes are at right angles to one another. Thus

a compound elastic rod is formed, of which one part can easily

vibrate in one direction, and the other part in a direction at

right angles to the former. The whole is fixed in an upright

position by clamping one of the slips in a stand, and a small

bright object (such as a silvered bead) is attached to the top

of the other.

If now the rod be disturbed in any manner, so that both its

parts are bent, and then left to itself, the motion of the free

end will be compounded of vibrations which (when the deflec-

tion is not too great) are sensibly rectilinear and harmonic, and

at right angles to one another. The period of one component

is fixed, depending on the length of the upper part of the rod

;

but the period of the other component may be altered within

certain Umits by clamping the lower part at different points.

If the two periods are commensurable, suppose them to be

viT, nr, where the ratio »« : « is in lowest terms. Then mnr
(the least common multiple of ot r and n t) is the period of the

resultant vibration, and the path of the free end is a re-entrant

curve, described in this period. If then otmt be sufficiently

small, e.g. not greater than about one-tenth of a second, the

impression on the retina made by the bright bead in any posi-
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tion has not time to fade away before the bead comes into the

same position again, and the eye sees a continuous bright

curve, more or less complicated according as the numbers m
and n are greater or smaller.

If the periods of the component vibrations are incommen-

surable, or if their ratio is expressible only by high numbers;

then the real path of the bead is a non-re-entrant curve, or a

very complicated re-entrant one. But, in either case, if the

ratio is approximately expressible by low numbers, the actual

appearance to the eye will be that of a curve gradually going

through all the forms which would be possible if the approxi-

mate ratio were exact, in the manner already explained (Arts.

56-59).

63. Another method, due to M. Lissajous, consists in re-

ceiving upon a screen a beam of light which has been success

sively reflected by two small mirrors fixed to the ends of two

tuning-forks vibrating in planes at right angles to one another.

It must be observed that the effect in this case depends, not

on the motion of translation of the mirrors, but upon theif

angular motion, which, though small, impresses on the reflected

beam a sufficient deviation to produce a considerable displace-

ment of the spot of light on a distant screen.

64. The methods described in the last two articles are useful

for illustration; but, for the purpose of exact observation, the

following, also devised by M. Lissajous, is much better adapted.

The object-glass of a microscope is attached to one prong of

a tuning-fork, so as to vibrate with it, the other prong being

counterpoised : the axis of the object-glass is at right angles to

the plane of the vibrations. The eye-piece is fixed. When
the fork vibrates, the image of any stationary luminous point,

formed by the object-glass, performs also vibrations which are

very approximately linear and harmonic; thjs vibrating image

is viewed through the fixed eye-piece, and (the vibrations being

sufficiently rapid) appears as a continuous straight line. But,

if the luminous point itself, instead of being stationary, performs

rectilinear vibrations at right angles to those of the fork, and in

the same plane, the image will appear as a curve, either inva-



Imaginary Unrolling. 45

riable in form, or changing according to the conditions ex-

plained in Arts. 55, &c. Let us suppose, for clearness, that

the vibrations of the object-glass are horizontal, and those of

the luminous point vertical. Then the horizontal component

vibration of the image being harmonic, and of given period,

the form of the curve will depend upon the character of the

vertical component, and upon the ratio of its period to that of

the horizontal component ; hence, if the ratio of the periods be

known, the character of the vertical vibrations (i. e. the actual

vibrations of the luminous point) can be inferred from the

observed form of the curve.

In fact, it has been seen that in order that the curve may be

distinctly observable, the periods of the two component vibra-

tions must be to one another either exactly, or very nearly, in

some simple ratio. The curve may then be supposed to have

been formed by rolling on a transparent vertical cylinder a

plane curve in which the (horizontal) abscissa is proportional

to the time, and the (vertical) ordinate is equal to the actual

displacement of the vibrating point, at the given time, from its

mean positioji. We have, therefore, to reproduce this plane

curve, which completely defines the actual vibration of the point,

by imagining the cylinder to be unrolled. It has been re-

marked by Helmholtz that it is easier to see what the result of

this unrolling would be, when the ratio of the periods is not

quite exact, than when it is ; because then the cylinder appears

to turn about its axis (Art. 57) so that the observer is enabled

to see it, so to speak, on all sides, and to disentangle from one

another those parts of the curve which are on thefront from

those which are at the back, through the contrary directions of

their motion.

65. In reference to this subject, the student will find the

following a useful exercise. Draw on a slip of paper two com-

plete waves of a harmonic curve (Art. 66), choosing the wave-

length so that the double wave can just be wound once round

a glass cylinder (e.g. a common lamp-chimney). Cut the paper

along the curve, so as to obtain a slip of which one edge has

the form of the curve ; and then, having rolled this on the glass
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cylinder, mark the glass along the edge of the paper with a

glazier's diamond pencil. This is very easily done, and the

cm-ve on the glass is distinctly visible both in front and at the

back. If now the cylinder be held vertically at a moderate

distance from the eye, and turned about its axis, the series of

forms will be seen which would be produced if, in an observa-

tion of the kind described in the last article, the luminous point

performed simple harmonic vibrations with a period nearly

equal to half that of the vibrations of the microscope.

Then vary the experiment by substituting for the harmonic

curve on the paper either one or more waves of any other kind,

and particularly of a zigzag formed by portions of straight

lines, thus:

Fig- 7-

The same thing may be done with a wave-length so chosen

that the paper will go two, three, or more times round the

cylinder. The curve on the glass then becomes more and

more complicated, and the marking with the diamond pencil is

not so easy, on account of the over-lapping of the paper.

The object of the exercise is to practise the eye in the

imaginary unrolling, which is necessary in order to infer the

form of the plane curve on the paper from that of the curve

as seen on the cylinder. (See Helmholtz, p. 139.)
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THE HARMONIC CURVE.

66. If the motion of a point be compounded of rectilinear

harmonic vibrations, and of uniform motion in a straight line

at right angles to the direction of those vibrations, the point

will describe a plane curve which is called the harmonic curve.

Let the straight line be taken for axis of x, and let v be the

velocity of the motion along it; then we may suppose the

origin to be so taken that the abscissa of the moving point at

any time / shall be given by the equation x = vt. The ordi-

nate _>/ will be given (Art. 47) by the equation

. flirt . \
y = asmC h a\,

where a and t are the amplitude and period of the harmonic

vibrations.

Eliminating / between these two equations, and then putting

z/ T = X, we obtain

for the equation of the harmonic curve. (It was formerly com-

monly called the ' curve of sines.')

If a wheel were to turn imiformly about a horizontal axis,

and at the same time to slide uniformly along it, the projection

of any point in the wheel upon a horizontal plane would de-

scribe such a curve. Or if a wooden cylinder, terminated at one

end by an oblique plane section, were smeared with printer's ink,

,and then rolled over a sheet of white paper, the line bounding
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the blackened part of the paper would be a harmonic curve.

(The proof of this proposition, which has in fact been already

implied (Art. 53) may be left to the reader.)

If in equation (i) we put x ± z'X instead of x {i being any

integer), the value of j/ is unaltered. The curve, therefore,

consists of an infinite series of similar waves, thus,

—

Fig. I.

which are divided symmetrically into upper and under portions

by the axis of x. The distance between corresponding points

of two consecutive waves is X, which is called the wave-length; '

and the constant a, which is the greatest value of the ordinate,

is- called, as before, the amplitude.

The value of a has no effect on the form of the curve, but

determines its position; so that a change in a would shift the

whole curve along the axis of x.

67. A harmonic curve is most easily drawn in practice by

determining a number of points and drawing the curve through

them by hand. The points may be found by erecting ordinates

at (arbitrary) equal distances, and making them equal to the

ordinates of points on a circle of arbitrary radius, which divide

the circumference into an arbitrary number of equal parts.

The radius of the circle determines the amplitude, and the

distance between two consecutive ordinates of the curve.
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multiplied by the number of parts into which the circle is

divided, is the wave-length.

Composition of Harmonic Curves.

68. The formation of a resultant curve, in which the ordi-

nate of any point is the algebraical sum of the corresponding

ordinates of the component curves, has been already explained

(Art. 10, &c.). The case in which the component curves are

harmonic is specially important.

Two harmonic curves which have equal wave-lengths can

always be compounded into another harmonic curve with the

same wave-length.

For let the component curves be

>/ = flsin(2 7r- + a), y = h ^Wi.iiTt - \-^

,

A A

the value of j/ in the resultant curve is the sum of the values

given by these two equations, and this can be put in the form

y = csm{2w^ + y),

if c and y be determined (see Art. 50) so as to satisfy the

equations

f cosy = a cos a + ^cos^,

f siny = a sin a + ^sin/3.

The value of c, the amplitude of the resultant curve, is

a/s^ + P + 2 (7 3 cos (a — ^),

which may vary from a + b to a~»~b, according to the value

a — /S, which determines the relative position of the compo-

nents.

In the particular case in which the amplitudes of the com-

ponents are equal, and one of them is half a wave-length before

the other, so that cos (a — /3) = — i, the value of c is o ; or

the resultant curve degenerates into a straight line coinciding

with the axis of x, the components completely neutralizing one

another.

69. It evidently follows that any number of harmdnic curves
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having equal wave-lengths may be compounded into a single

harmonic curve with the same wave-length, and of which the

greatest possible amplitude is the sum of the amplitudes of the

component curves.

70. If the component curves have different wave-lengths,

they can no longer be compounded into a single harmonic

curve ; though, if the wave-lengths be commensurable, the re-

sultant curve is periodic.

Suppose X to be the least common multiple of the wave-

lengths, so that their actual values are — , -, &c., where m,n,...
m n

are integers. The equation to the resultant curve is then

2 77— V a-) -\- I sin(2 7r— 1- ^) + . . . .

which does not admit of reduction ; but we see that the value

oiy is unaltered by putting x -\-\iox x, so that the period or

wave-length of the resultant curve is X, that is, the least com-

mon multiple of the wave-lengths of the components.

If the component wave-lengths are incommensurable, they

have no finite common multiple, so that the period of the

resultant curve is infinite : in other words, the resultant is non-

periodic.

The forms of the component harmonic curves depend only

on their amplitudes and wave-lengths ; but ihtirpositions depend

upon the constants u, /3, &c. A variation in any one of these

shifts the corresponding curve along the axis ; and any such

shifting will evidently alter the form of the resultant curve, and

the positions of its points of intersection with the axis, without

altering its wave-length.

71. If the wave-length only of the resultant be given, the

wave-lengths of the components may be all possible aliquot parts

of it, including the whole as one case of an aliquot part;

and the number of the possible components is therefore un-

limited.

Thus every curve which could be constructed in this manner,

so as to have a given wave-length X, would be found amongst

those produced by placing along the same axis an unlimited
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number of harmonic curves as components, with wave-lengths

X, \\, IX, &c.

It is evident that by varying arbitrarily the amplitudes of the

components, and shifting them arbitrarily along the axis, an

infinite number of resultants could be produced, having all the

same wave-length X. But it could not be assumed without

proof that every possible variety of periodic curve could be so

produced.
" This, however (with a limitation to be mentioned below), is

true, and constitutes the celebrated theorem of Fourier. Before

giving a formal enunciation of it, we will define precisely the

meaning of the word axis as used above. Corresponding

points of a periodic curve lie upon a straight line parallel to

a fixed direction. Any straight line parallel to that direction

may be called an axis of the curve ; but it is convenient to call

the axis that line which cuts off equal areas from the curve on

its opposite sides. Thus, the axis of x is the axis of a har-

monic curve, as defined by the equation y = as\a(nx + a).

This being premised, we proceed to enunciate

Fourier's Theorem.

72. If any arbitrary periodic curve be drawn, having a given

wave-length X, the same curve may always be produced by

compounding harmonic curves (in general infinite in number)

having the same axis, and having X, ^X, iX, .... for their wave-

lengths.

The only limitations to the irregularity of the arbitrary curve

are, first, that the ordinate must be always finite ; and secondly,

that the projection, on the axis, of a point moving so as to

describe the curve, must move always in the same direction.

These conditions being satisfied, a wave of the curve may

have any form whatever, including any number of straight

portions.

Analytically the theorem may be expressed as follows

:

It is possible to determine the constants C, C^ C^ &c.,

> E 2
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Oj, a^, &c., so that a wave of the periodic curve defined by the

equation

y=C-^ CiSin(-Y- + ^) + C^sinl^a-^ -\- a^)+ ...

or jc- = C + 2,.^i Q ®"^ V^X" + "*-)'

shall have any proposed form, subject to the conditions men-

tioned above.

By a change of notation, we may write the above equation

in the following more convenient form, viz

:

y = A,+ 2 2^^^ ^iCOS -^^ + 3 2;=! ^iSm-^^. (2)

(For a demonstration of the theorem, see the Appendix to

this chapter.)

73. The demonstration of the theorem just enunciated

includes a determination of the values of the constants.

But we may observe here that, assuming the truth of the

theorem, we can obtain the expressions for these values at

once, by means of the following simple propositions.

If z,j, be integers, all the integrals

/azVj; si'trx
, ^ . 2i'n x . 2Jitx ,

cos —r— cos ^^— ax, I sm—-— sm —^ ax,

I'

. 2 11? X ZiTTX,
sm—-— cos -^— ax.

taken between the limits o and X, vanish unlessy = z. lij = i

the third integral still vanishes, while the first two have the

common value -, or X, according as t is different from, or

equal to, o.

Hence, if we multiply both sides of the equation (2) by

2tnX J , . 2l7rX
, , . . ,

cos —-

—

ax, or by sm—-— dx, and mtegrate m each case

between the above Umits, we obtain, for all values of i, in-

cluding o,

, I /"^ 2{'n-X , „ I A . 2inX .

* " X / -^ ^°^ "~x~ •*'
*
" x7 -^ ^''^ ~ir" '



Fourier's Theorem. 5 3

74. Thus, whatever the function _/(^) may be (the proper

limitations being always supposed), the expression

\\y(x) dx +
IXZ cos "-^f/{x) COS^ dx

,
2 fca, . 21T7X [^., . . 211TX

,
. .

•represents a periodic function of which the value coincides with

that oi/{x) for all values of x between o and X, but not for

other values, unless the function y(^) be itself periodic, and

have X for its period, so thaty(j*r + X) =/{x); in which last

case alone the expression (3) may be taken without limitation

as equivalent io /{x).

75. When the actual values of the coefficients A., B., are

required, they have to be found by evaluating the definite in-

tegrals (Art. 72) by which they are expressed.

Suppose, as in Art. 73, that_y = f(x) from x = o to x = \.

This equation may subsist in two different senses, which it is

important to distinguish.

(1) y may be a given function of x in the ordinary alge-

braical sense ; that is, it may be possible to assign a rule by

which the value oiy can be calculated for any assumed value

of X. Or (still using the word function in the same sense), j'

may be a given function from x = q Xa x = a, another given

function from x = a \.o x = b, &c., a, b, &c., being given

values between o and X.

In these cases the ordinary methods of the integral calculus

are appKcable to the evaluation of the definite integrals. But

(2) y may be a given function of x only in the more general

sense (including the former as a particular case) in which the

word function should always be understood in mathematical

physics ; viz. that for every value of x there is a determinate

value of ^, though it may be impossible to assign any rule for

calculating it, in which case it is only to be ascertained by

actual observation or measurement.

Thus, if we draw by hand upon paper an arbitrary curve

between two points, we can measure as many ordinates as we
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please, but we can give no rule for calculating the value oiy
for an assumed value of x.

In such a case the values of the definite integrals can only

be found approximately, by measuring a sufficient number of

values ofJ/, and applying the method of quadratures. We can

thus obtain, by means of equation (2), an approximate rule for

calculating the value oiy for any value of x between ,given

limits. The rule would be exact if the coefficients A ., B., were

exactly known; but, in order to calculate them exactly, we

must be in possession of such a rule to begin with.

Since, however, the coefficients actually exist, though we may

not be able to ascertain their values rigorously, the abstract

truth of the theorem is in no way interfered with ; and its great

value consists partly in this, that it furnishes an analytical ex-

pression (within finite limits) for any function whatever, whether

it be a function in the ordinary algebraical sense, or only in

the physical sense explained above.

When the coefficients A., B., are considered as having arbi-

trary values, the expression (2) (Art. 71) evidently represents

a completely arbitrary periodic function of x.

76. The following is a simple and useful example of the

application of the theorem.

B X

Fig. I.

Let OA, AB,\)& two straight lines, cutting the axis of x at

the origin O and at a point B, such that OB = X.

It is required to determine the coefficients so that the ex-

pression (3), Art. 73, shall give the value of the ordinate at any

point of the ' curve' OAB, from x = o to x = \.

Suppose a, b, are the coordinates of A. Then /(.ar) \% -x
a

from X = o to X = a, and is {x — X) from .^ = a to
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:*: = X. Hence, putting, for the present -r— = n, we have

(Art. 72)

h ['
'

b C^
\A. = - xcosnxdx -\ -/ (x - \)cosnx dx

* ajf, a — \J„ ^ '

3 /« ^ A
\B. = - I xsinnx dx -] / (x — \) sin n x dx.

' aj,^ a - \Ja
"^ '

Performing the integrations, we find, after easy reductions,

. b a{i — cos « X) — X (i — cos n a)

i n^Xa X — a

^ b X sin « a — a sin « X
B, = -s-— • r .

2 n \a X — a

The value of ^^ is most simply obtained directly from the

I Z*^
expression - / /{x) dx, which gives at once

XJo

^d = - X (area OAB) = -.

X 2

But it may also be found by evaluating in the usual way the above

expression for A ., when i (and therefore n) = o. Only it is to

be observed, that for this purpose we must not assume i to be

an integer before putting i = o. The same process gives, of

course, B^ = o. If now we introduce the value of « ( = -—- )X
we find, for values of t from i to 00

,

. b ^^ / . a \
A . = .o 2 • -A \ { cos 2 ITT - — I )

B. = ^ „ -TT T Sm 2 Z 77 -.

These expressions (with A = -) are to be introduced in the

equation (2), Art. 71, which then becomes the equation to a

periodic curve, of which one wave is OAB.
The result is easily reducible to the following form

:

2t1T{x )

b b>? ^r.i=a> I . lira . 2
y = - + -9—7; s2j- I "aSm—-

OK 1^,^=00 \ . ma . 2 /»\
- + -5—7; r^- ToSm—— sm , W
1 7T^ a (\ — a) ^i=l t^ \ X
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It may be observed that all the periodic terms on the right

of (^) vanish {ox x = -, and also for x = ; from which

it follows that every one of the harmonic curves represented

by the several terms passes through the two points C, D, which

bisect the lines OA,AB, since the abscissae of these points

h_

2
are -, , and their ordinates are both

2 2
It is also

evident that the ' axis' (Art. 70) of the whole locus represented

by (3) (consisting of repetitions of AE) is the line CD
indefinitely produced.

77. The following simpler example is also instructive. It

is required to find a periodic function, of which the value shall

coincide with that of m(x ) from x
^ 2

o to .a; = X. In

other words, to find the equation to a periodic curve consisting

T

^X

Fig. 2.

of repetitions of the straight line A B (Fig. 2), in which OC = \
and ta.n BMC = m.

In this case we have

2 ijrx .

cos—;^— ax
. m f^ , X,
A. = - (x )

» XJo ^ 2'

Tf m ['^ X. . 2 iirx ,

and it is easily found that A^= o for all values of i, while

«
= 77^- Hence equation (2), Art. 71, gives,
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y ^
^i-^ - sin^—

'

or

m\( 1 . 2Ti X I. 2 1TX I. 27rj;, ")/x
J'
= ^ - sin— h - sin 2 --— + - sin 3 ^-- + ...\ (4)7rt.I A 2 A 3^ J

which is the required equation.

Here we may observe that, if the locus be considered as

consisting of the detached lines A B, BE, &c., the value of^

undergoes a sudden alteration from m - to — m - when x
2 2

passes through o or any multiple of X, while for these critical

values of x the equation (4) givesj/ = o, that is, the arithmetic

mean of the two values just mentioned (see Appendix to this

chapter). On the other hand, since every term in the series (4)

is continuous, it is impossible that the sum of the series can

undergo an absolutely sudden change of value, without passing

through the intermediate values. This subject cannot be fuUy

discussed here; but the true view seems to be that while x
varies from a value infinitely near to a critical value, but less,

to a value infinitely near, but greater, j/ passes instantaneously

through all values from m- to — m-. Or, geometrically, the

locus of -the equation (4) ought to be considered as including

the portions AA, B B, &c.., which are inclined at an infinitely

small angle to the true perpendiculars drawn through 0, C, Sec,

and cut them in those points.

Assuming that we may differentiate equation (4) we obtain

2 m
ax

(ZttX 2it X 21T X
,

1
cos— V cos 2 — 1- cos 3 —r- V ..->

Now, considering the series

1 + 2 (cos 5 + cos 2 5 4- cos 3 fl + . .
.)

as the limit of

I + 2 (c cos 5 + f ^ cos 2 5 + . .),

I — f^
that is, of the fraction 3——-„, when c (increasing)

'
I — 2 f cos 5 + f*

becomes = i, we see that it must be taken as representing o-
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for all values of B except the critical values o, 2 is, Sec, which

give cos 6 = I, in which case it becomes 00 . And we avoid, as

before, the difficulty of attributing a sudden change of value to

a series of which all the terms are continuous, by considering

that it passes through all values from o to 00 , and back again

from 00 to o, while x varies from being infinitely little less to

being infinitely little greater than a critical value. And it fol-

lows that the series within brackets in the above expression

dy dy
for -J- has in general — \ for its value, so that -7— = m; but,

while X passes through the critical values o, X, &c., the value

of the series passes instantaneously through all values from — ^

to 00 and back again '.

Hence A',A,£,£', &c. in Fig. 2, are to be considered as

points at which the tangent changes its direction, not with

absolute suddenness, but by turning round those points. So

that if we suppose a moveable point P to be describing the

locus A B B', &c., the tangent coincides with A B until P
approaches infinitely near to B, and, while P is passing through

B, turns through all directions between A B and B B', with

which last it coincides as soon as P has passed through B.

In other words, the two lines AB, B B', are to be considered

not as making an angle at B, but as being connected by an

infinitely short curved arc, of which the radius of curvature

' We purposely avoid here all discussion of the legitimacy of differen-

tiating (4), and of the logical validity of reasoning founded upon the

properties of the series (5). What is certain is, that it is impossible to have

clear notions of the true nature of Fourier's series, especially in its applica-

tion to the representation of discontinuous functions, without some such

illustrations as those in the text. For a view of the various methods which
have been proposed in order to treat the subject with perfect rigour, and
of the theoretical questions connected with it, the reader is referred to

Stokes, On the Critical Values of the Sums of Periodic Series. (Camb.
Phil. Trans., vol. viii.)

De Morgan, Diff. and Int. Cat, p. 605, &c.
Price, Infinitesimal Calculus, vol. ii. § 197.
Thomson and Tait, Nat. Phil., vol. i. § 75.
Boole, On the Analysis of Discontinuous Functions. (Trans, of R.I. A.,

vol. xxi. pt. I.)

But Fourier's original work, Thiorie analytique de la Chaleur, which unfor-

tunately is now rare, should be consulted by all students who can obtain
access to it.



Pourier's Theorem. 59

is CO at the extremities and infinitely small at the middle. This

remark is of course equally applicable to the angular points in

the locus, Fig. i. In general, we may say that Fourier's theo-

rem evades the difficulty of expressing analytically the abrupt

changes of value which may, and do, occur in nature, by sub-

stituting for them continuous, but infinitely rapid, changes.

78. Any physical condition (such as density, pressure, velo-

city, &c.) which is measurable in magnitude or intensity, and

which varies periodically with the time, is expressible as a

function of the time by means of Fourier's series. For in the

case of actual physical changes, the conditions which make the

theorem applicable are necessarily fulfilled. In other words,

every actual vibration can be resolved mathematically into har-

monic vibrations. If j/ represent the magnitude in question,

and T the period of its vibration, then y is expressible by an

equation of the form

where _;/ is the mean ^ value oly, and each of the variable terms

represents by itself a harmonic vibration, of which the period

is an aliquot part of the whole period t.

79. Thus every periodic disturbance of' the air, and in par-

ticular such vibrations as excite the sensation of sound, can be

so resolved. Now we know as a fact that a vibration of the

air excites in general the sensation of a musical note, which is

not a simple tone (Art. 12, &c.), but a combination of tones cor-

responding in general to vibrations of which the periods are

aliquot parts of the period of the original vibration. (The ex-

ceptions to this statement are apparent rather than real. The

so-called vibration of a tuning-fork, for example, is not a single

' vibration' in the strict sense of the term, but is compounded

of vibrations of which the periods are incommensurable. Hence

I
/'

' The value of^ , viz. - / ydt,is the average of all the values which y
° '^Jo

has, at instants separated by infinitely small equidistant intervals, during

the period t.
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the whole motion is not really periodic. In this and other~

similar cases, component tones are heard which do not belong

to the harmonic scale of the fundamental tone.)

The ear, therefore, resolves a note into simple tones after

the same manner in which Fourier's theorem resolves a vibra-

tion into harmonic vibrations ; and the question naturally arises

whether each simple tone perceived by the ear is really caused

exclusively by the corresponding harmonic component of the.

complex vibration.

We shall soon be able to assign a conclusive reason for

believing that this is so ; and we shall thus obtain an answer

to the question suggested in Art. 14.

APPENDIX TO CHAPTER IV.

FOURIERS THEOREM.

The equation

I — 2 C COS {x — a) + c

which may be also written

y
(i — r) sec*

2

(x-cf^ (i +f)2tan2-^^^

a and c being any constants, represents a periodic curve of

which the ordinate is always positive if c be numerically less

than I. In what follows this condition will be supposed, and
also that c is positive.

Then v will have ,
—— for maximum and minimum

Values, corresponding to x = a + iiir, x = a + (2 ?' + i)jr.
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i being any integer; and the distance between the ordinates
of corresponding points on successive waves of the curve
is 2 TT.

Fig- 3-

Fig. 3 represents a portion of the curve in the case in which
£ = f . AQ, BR, &T& two of the maximum ordinates, and

P„ Mf, a minimum ordinate. It is evident that if the value of

c be increased, tending towards i as a limit, the maximum
and minimum ordinates will tend towards oo and o as limits.

At the same time if a fixed point M, or M', be taken, however

near to A, the ordinate MP or M' P" will tend to o as a

limit.

Hence, if the curve be considered as described by a point P,

the motion of P tends, as the value of c approaches i, to

become that of a point which moves along X except when
'mfinitely near to one of the points A, B, ho.., but passes those

points by going up the left side of the ordinate to an infinite

distance, and down again on the right side.

The values (a + 2 zV) of x at A, B, &c., will be called

critical values.

The area included between the curve, the axis of x, and two

consecutive corresponding ordinates (as P M, P' M", or A Q,

BR) is 3 jr. This is easily found by integrating directly the

expressionJ' dx; but it is most simply obtained by first deve-

lopingj/ in a series : thus,

y = 1 + 2{CC0S{X — a) -\- C^C05 2{X — a) + .. '.),
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from which, observing that

fa: + 2 7r

COS i {x — a) dxr
for all values of i except o, we find at once

Cx + 2tr

y dx = 2 IT.

J X

The area between a maximum and next following minimum
ordinate, (as QA M^ P^, is of course = jr. The following are

obvious inferences :

—

If MP, M' P be any two fixed ordinates, including one
maximum ordinate A Q between them, the area MP Q M'
tends to 2 n- as a limit when the value of c approaches to i.

This is true however near either or both ordinates may be to

A Qi so long as neither of them coincides with A Q absolutely.

Each of the areas MP QA, AQP'M tends to become = n.

And if M' P', M"P" be any two fixed ordinates, both in-

cluded between two consecutive maximum ordinates, the areaMP'P"M' tends at the same time to o. And this is true

however near M P', M"P" may be to the maximum ordinates

AQ, BR, so long as there is not absolute coincidence with

either.

And, however small the fixed quantities AM, AM', M'B
may be, it is possible to take c so nearly equal to i that the

areas MPQA,AQP'M', M'P"RB, shall each differ from
TT, and the areaMP'P"M" from o, by quantities less than any
assigned quantity. ft

These conclusions may be expressed analytically as follows.

If Xo, x^, be two values of x, including between them only one
critical value (say a), with which neither of them absolutely

coincides, and if f, ^ be any positive constants such that a + e,

and a — ^ are also both included between x^ and x^, then the

four integrals

Co. - el Co. ra + e rxi

/
y<ix, / ydx, i ydx, / ydx,

have for their limiting values o, tt, w, o, when c approaches to i,

however small e and e^ may be. The sum of the four integrals

IS y dx, and, supposing Xj — x„ to have the greatest admis-

. °

sible value (2 jr), this is equal to 2 tt ; and in any case has 2 n
for its limit when c approaches to i. The sum of the two

' y dx, and this has 2 tt for its limit.
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Let us now suppose that x^, x^ have any values such that

jfJ — x^ is not > 2 JT ; and let /{x) be any function which is

finite for all values of x from x^ to ^j inclusive. Then {y
having the value (i) as before) the integral

y{x)y dx, (2)

since_> is always positive, is equal to the product of the integral
~''\

ydx,hy some quantity intermediate between the (algebrai-
-^0 «-

cally) least and greatest values which /"(jtr) takes while x varies

from Xf, to Jfj.

There are three cases to be considered.

(1) There may be no critical value (a + 2 iir) from x = x^

to x = ^j inclusively. In this case the limiting value of I y dx,
J Xo

and therefore of the integral (2), is o when c approaches to i.

(2) There may be a critical value, say x - a, between x^

and x^, but not coinciding with either of those limits.

In this case the integral (2) may be considered as the sum
of the three integrals

J(-a

- e» /"a + e T^l

/{x)ydx, /
/{x)ydx, / /{x)ydx,

Xq •/a — e^ %/a + e

of which the first and third have o for their limiting values (by

the first case), while the second is equal to ydx multiplied
J a — e^

by some quantityM intermediate between the least and greatest

values which /{x) takes while x varies from a — e' to a + t.

But e and e^ may be as small as we please ; they may therefore

be taken so small that M shall differ infinitely little from/(a).

ydx is 2 JT, as was shewn above.
-. — el

Hence we infer that in this case the limit of the integral (2),

when c approaches to i, is

3 5r/(a). (3)

(3) One or both of the limits, j:„, x^, may coincide with a

critical' value. Suppose, for instance, Xg = a, x^= a -{- zv.

Then by considering the integral (2) as the sum of

/(x)ydx, /{x)ydx, /{x)ydx,

it will be seen without difiiculty that the limiting value is

"/W + V^W ; that is, JI- (/(a) +/(a + 2 tt)).
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If only one of the limits x^, x^, coincided with a critical

Value a, the result would evidently be ir/{a).

The above conclusions require modification in the case in

which the functiony(j;) is such as to undergo a sudden finite

change . of value when x passes through the critical value. If

a sudden change take place for any value of x not absolutely

coinciding with the critical value, however near to it, the rea-

soning is not affected, because we may take e and t^ so small

that the value in question shall not lie between a -)- e and

But suppose (in case (2)) \hs.\. /{x) is = a when x is infi-

nitely little less than a, and = b when ;*: is infinitely little greater

than a. Then, considering the integral / f(x)ydx, as the

sum of / f{_x)y dx and / /{x)y dx, we see that the first of
J a.— t?- J a.

these will have for its limit ^/{a), and the second !r/"(3) ; so

that the limiting value of (2) will be

^{/{a) +/(J>)),

that is, half the sum of the values given by the general rule for

the two values oi/{x).

We may enunciate these results in the form of the following

TJteorem.

If x^, x^ be two values of x such that Xf,<a< x^, and
x^ — Xg be not > 2 tt, and ii/{x) be any function which is

finite for all values of x from x = x^Ui x = Xj^ inclusively, then
the value of the integral

/^i 1 — c^

/ /{^) 7
T"!—2 ^x, (2)

when c (increasing) approximates indefinitely to i, has in general
for its limit 2 7r/(a). But if/(;*:) undergoes a sudden change
of value from a to b when the value of x passes through a, then
the limit is 7r(/(<2) +/((5)).

If either x^ = a, or x^ = a, while x^ — x^<2ir, then the

limit is ir/{a).

But a X^= a,X^= a + 2ir, then it is n {/(a) +/{a + 2n)).
On these last suppositions we may provide for the case of

sudden changes of value of the function by understanding (if

necessary) /{a) to mean /(a + f), and /{a -f- 2 jr) to mean
/(a + 2 TT — f), where e is an infinitely small ~ positive quan-
tity.
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Since the value of a must not transgress the limits x^, x^, and
ATj — x„ must not be > 2 tt, we shall give the greatest possible

extent to the theorem by supposing x,^— Xg= 2 tt.

The notation used above was convenient in the course of

demonstration ; but in actual applications it is better to change
it by writing a for x and x for a, so that a becomes the variable

in the integration. The principal result may be then stated as

follows

:

The limit of the integral

Jr»i
I — f

"

'

y'C") } r~;—3 '^"i^^ w J _ 2 ^gQg (^ _ a) ^ ^
where a^ — a^ = 2 jr, and x has any value between ii„ and Uj, is

in general 2 7r/{x), when c approximates indefinitely to i.

The special cases are of course to be stated as before, mutatis

mutandis.

If now in the above integral we substitute for the fraction its

development, viz.

I + 2 (c cos {x — a) -\- c'' cos 2 (^ — o) + . . . .),

we obtain the series

/ f{a) da + 2 2jir ^'
/
y^(") cos i{x — a) da,

and we may therefore aflHrm, that when c approximates to r,

the limit of this series is in general 2 nfix) for any value of x
between a„ and a^, but is tt (<? + V) for a value of x correspond-

ing to a sudden change from a to i5 in the value oif{pc), and

T (/("o^ +/K)) for X = a^QXX = a^.

Assuming, then, that when c =\ the value of the series

becomes equal to its limit', we may write the result as follows

(excluding of course the exceptional cases)

:

2 Kfipc) = 2l=!„ / /(») cos i(x - a) da,

for values of x between o^ and a^

. Zttx' 2 jra' .

If now we write for x, and ^r— for a, assummg also
\ A

c<j = o, aj = 2 TT, the above equation becomes

,,2irx\ l.^i=m f^ ,27ra\ 2tn{x'—a')

A-ir) = -x2i=-.j/(^)'=°«—K— '^^

'

1 This assumption appears to be the only point in the demonstration

which is open to objection. But we cannot here discuss the proposition,

' what is true up to the limit is true in the limit.' On the convergence of

the series (3"), see the demonstrations of Tait and Thomson and of Stokes,

referred to above (Art. 77).
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or, omitting accents, and writing/(j»r) instead '^^/(^'~\~)y

.. , I ^i=oo p ,, . 2 lit {x — a) J
f{x) = - 2,.=_„y^/(«) cos

:^
da,

which is now true for values of x between o and X.

This equation may, by an obvious transformation, be written

thusr

^(^)=xio-^^"^'^" + X^*=^
COS-^^/(a)eOS-j^<fa

,
2 _,j=a, . Zlnxf^ . 2 1jra

+ x2,=,
sm-^^/(a)sm-^</a,(3)

in which form it Is usually most convenient.

A further transformation, which gives an expression fory^(x)

by means of a double definite integration, and which is also

often referred to as ' Fourier's Theorem,' is not required for the

purposes of this treatise.

If we had taken above a^= — tt, Oj = + tt, we should have
found in the same way a series only differing from (3) in having

, + - for limits in the integrations, instead of o, X. Sup-
2 2

pose this alteration made, and then suppose further thaty(.r)

is an odd function, that is, that /{— x) - —/{x}... In this

case it, is easily seen that the integral / _/"(a)cos—r

—

da
J-^ X

vanishes- for all' values of i, including r = o,, smce it may Be
-divided into pairs of equal elements,, bjit with ©pposke. signs.

But r\ • r\ •

Its ,/ V . 2tna l^ jr/\ • 2Z7r(i.

/
/(a) sm —-— da= 2 I r{a) sm.—rr— da

J_^ X Jo A

since the integral on the left may be divided into pairs of equal

elements with the same sign.

Hence, if we put - =; /, we obtain instead of (3)

, , 2.^1=00 . i'^x P . . . tira
fix) = - 2^^j sm -^j^ /{a) sm— da,. (,4)

which is, true from x <= — I to x == + I for any {urteiian/{x)

which is odd between those limits. And it will evidently be

true from x = o to .«: = / for any function.

'M/{x) besides being odd, is periodic, with period (or wave-

length) 2/, then (4) will be true without limitation.

"The case in which'^(d;) is an even function {/(js). =^J~{.— x))

may be left to the reader.



CHAPTER V.

VIBRATIONS OF AN ELASTIC STRING.

80. Op the various modes in which musical sounds may be

produced, one of the most usual in practice, and simple in

theory, consists in the vibration of elastic strings.

The term 'elastic string' is to be understood as implying

ideal qualities, which do not belong absolutely to any actual

string; namely, non-resistance to flexure, and extensibility

according to the law that extension is proportional to tension.

According to this law, if / be the natural length of the string

(or its length when not subjected to any tension), and /' the

length when it is stretched by a force T, then

T

where ^ is a constant, of which the value depends on the

nature of the string.

Since the homogeneity of the above equation requires that

T
-=, should be an abstract number, ^ is a quantity of the same

kind as T, that is, a force. And since the supposition /' = 2t

gives E = T', we see that E may be defined as the force which

would be required to stretch the string to twice its natural

lengtli.

No actual string is perfectly flexible, nor indefinitely exten-

sible, according to the above law. But when the changes of

length are small, it is proved by experiment' that they are sen-

sibly proportional to the changes of tension. And when the

tension is considerable, and the thickness of the string very small'

F 2
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. in comparison with its length, the resistance to ilexure is very

small in comparison with the resistance to extension.

Under these conditions the phsenomena with which we are

concerned are so nearly the same as they would be in the case

of the ideal string, that for most purposes they may be con-

sidered identical. The case in which imperfect flexibility must

be taken into account will be considered apart.

81. Supposing the two ends of an elastic string to be fixed

at points of which the distance from one another is greater

than the natural length of the string, its form in the condition

of equilibrium will be a straight line, and its tension will be the

same at all points'; namely, that with which the string would

have to be pulled at any point in order to maintain the equi-

librium, if it were cut there.

Suppose now the string to be slightly disturbed by any forces

whatever, which, at a certain instant, cease to act. The sub-

sequent motion of the string will depend upon the positions

and velocities of its particles at that instant ; and the mechanical

theory shews that it will vibrate, that is, will go through a series

of periodic changes, which, theoretically, would never cease.

The vibration actually does cease because the string gradually

gives up its motion to the surrounding air, to the bodies which

sustain the tension of its ends, and, in a different form, to its

own molecules.

The condition of the string at the instant when the disturb-

ing forces cease to act is called its initial condition.

When the initial displacements of all the particles of the

string are lateral, that is, at right angles to its original direction,

and when the initial velocities are lateral also, the vibrations

are sensibly lateral.

When the initial displacements and velocities are longitu-

dinal, the vibrations are necessarily longitudinal, and the form

of the string remains a straight line.

Vibrations of both kinds can coexist, but it is best to con-

sider them separately. Longitudinal vibrations of a string are

^ The effect of gravity is neglected, being insensible in all cases of tlie

kind here considered.
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of the same kind as those of a straight rod, which will be

treated of in another chapter. In the case of a string they are

practically unimportant. At present, therefore, we shall only

examine the lateral vibrations.

82. Lateral initial displacements and velocities, if they are

not in one plane, may be resolved into components in two

arbitrary planes at right angles to one another ; and each set of

components gives rise to vibrations in its own plane, which

coexist independently, and of which the actual vibration is the

resultant.

It is sufficient, therefore, to suppose that the initial displace-

ments and velocities, and therefore the subsequent vibrations,

are in one plane.

83. The true nature of the vibrations of a finite string may
be best understood by considering them under that aspect

which is suggested by the dynamical theory (see Chap. VII)

;

in which the string is regarded as infinitely long, and out of

the various possible forms of motion of an infinitely long string,

those are selected which are characterised by the existence of

nodes, that is, of motionless points. Any two such motionless

points of the' string might evidently become fixed without dis-

turbing the motion; and then all the string not included be-

tween them might be removed, so as to leave a finite string,

with fixed ends, which would continue to have the same motion

as it would have had under the original conditions. We shall

therefore begin with the case of an infinite string.

84. It must be always understood that though the following

propositions, in so far as they are merely geometrical, are true

without limitation, it is only when the displacements are infi-

nitely small that they are rigorously true mechanically; but they

are sensibly true within limits wide enough for the most im-

portant practical applications.

85. The simplest form of motion of an infinitely long elastic

string consists in the transmission of a single wave.

Let AB represent part of the string in its undisturbed con-

dition, and let CD be a line parallel to AB, of which any arbi-

trary portion QR is bent into an arbitrary curve. Imagine CD
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to be moving with a constant velocity, in the direction of its

length, either towards the right or towards the left, an4 that

part of the string AB which at any time is opposite to QR, tq

D

Fig. I.

be always bent into the same form by a lateral displacement of

its particles, the rest being always straight. Then the string

AB will be transmitting a wave. When a single wave is thus

transmitted, any particular particle of the string is disturbed

during the passage of the wave, and is at rest at all times before

and afterwards.

86. It is necessary, however, to explain how such a wave

could originate.

Suppose a portion of the string, which we may. call PQ^ to

be bent into any arbitrary form, and a determinate lateral velo-

city to be then commun,icated to each particle, ofP Q, according

to any arbitrary law consistent with the continuity of the string.

The subsequent motion will depend on the form of P Q, and

on these initial velocities of its particles.

Now the form ofPQ being given arbitrarily, it is possible, to

assign the initial velocities in one way so that a single wave of

the form PQ shall be transmitted to the right, and in another

way so that a similar yyave shall be transmitted to the left.

But if the initial velocities were assigned arbitrarily, the wave

PQ would in general be resolved into two components, of

which one would travel to the right, and the other to the left.

At present, however, we assume that the initial velocities have

been such as to give rise to a single wave.

Any number of similar pr dissimilar, waves may be trans^,

mitted at the s,ame time, either in the same or in, contrary
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directions. It is convenient to distinguish the direction of

transmission of waves, by calling them positive or negative

according as they are transmitted from left to right, or from

right to left.

87. The velocity of transmission depends only on the nature

and tension of the string, and not on the form or length of the

wave.

88, Let us now suppose two waves of equal length, but

otherwise of arbitrary forms, to be transmitted in contrary

directions so as to meet. After passing one another they will

proceed in their original forms. But during the passage a part

of the string will be disturbed by both waves at once, and the

displacements of its particles at any instant will be the sums of

the displacements due to the separate waves. This part of the

string will evidently have for its length the length of a wave,

and for its middle point the point at which the ends of the

waves first meet.

Fig. 2.

Let PQ, PQ (Fig. 2) represent the positive and negative waves

before meeting, and ~A the point at which they will first meet.

And let us now further suppose that each wave is (as in the

Figure) a reversed copy of the other, so that the figure would not

be altered by taming the paper upside down. (We may express

the same condition by saying that every straight line through A
which cuts one wave, cuts the other also at a point equidistant

from^ .4.) Two such waves may be called contrary waves.

Now \tXpni,p'n{ be any two- ordinates equidistant from A.

The corresponding points p, p of the two waves will arrive

opposite to A at the game instant, and the displacement of A
at that instant will be the algebraical sum oipm wi^ p' rri, that

is aero, since / m, p'ni are equal in length, but opposite in
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direction.

sP

Fig. 3-

Hence, since the same thing is true for every pair

of corresponding points, the point A will not

be displaced at all; in other words, the string

will have a node at A,

Thus, when an infinite string transmits two

contrary waves in opposite directions, there is

a node at the point at which they first meet.

89. Let us now inquire what conditions are

necessary in order that there may be two nodes.

Let A be the place of the first node and B of

the second; and suppose that a positive wave

PA, and a contrary negative wave A Q, are just

beginning to meet at A. The wave PA, pass-

ing on to the right, will after a certain time arrive

at the position P'B, and will then begin to dis-

turb B unless it meets at that instant a contrary

wave BQ' moving towards the left. But this

new negative wave BQ', when it arrives at the

position AQ, will begin to disturb A unless it

meets a new positive wave. And, continuing

the same reasoning, we see that there must be

an infinite series of positive waves meeting an

infinite series of negative contrary waves.

There will then be nodes at A and at B; but

it is evident that there will be also an infinite

number of other nodes at equal intervals. Hence

an infinite string cannot have more than one

node without having an infinite number.

The distance between corresponding points of

consecutive positive (or negative) waves is evi-

dently twice A B. For when the positive wave

which at any instant is at PA shall have arrived

at P'B, the next following one will not be at

PA, but so far behind that position as to meet

the negative wave B Q' when the latter arrives

sXAQ.

90. Let us, however, fix our attention upon
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the portion of string included between two consecutive nodes

A, £, supposing the rest of it to be hidden from view, and con-

sider its condition at the instant when the positive and negative

waves have just passed one another at A. The form of the

visible string will then be this,

—

Fig. 4.

and the positive wave, of which the left-hand end is now at A,

will be transmitted unaltered until its right-hand end reaches B.

It then begins to meet the negative wave coming from the

invisible part of the string, and to be compounded with it ; by

this composition the disturbed part of the visible string under-

goes a change of form, until the positive wave has passed com-

pletely out of sight, and is replaced by the negative wave,

thus,

—

Fig- 5-

which is transmitted to A, where it meets a new positive wave,

and a converse series of changes takes place ; and so on inde-

finitely. Thus, a wave will appear to pass backwards and

forwards between A and B, and to be reflected at those points.

Each reflection consists in a shortening of the wave to half its

length, followed by an equal lengthening; and during this

shortening and lengthening its form is changed into that of

the contrary wave.

91. During motion of this kind, both the whole string and

the portion AB are in a state of vibration, that is, undergoing

a periodic change of condition ; and the period of a vibration,
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er the interval of time between the recurrence of similar con-

ditions, is evidently the time required for the transmission of

a wave through twice the distance {AE) between consecutive

nodes.

92. Hitherto we have considered a wave as consisting only

of the bent or curved portion of the string. But we will now

call the- whole portion included between two consecutive similar

poiiits a wave, as we have always done before in treating of

periodic curves, so that a wave-length is now twice the distance

between consecutive nodes. In the preceding illustrations we
have supposed only a small portion of this wave to be curved,

in order to make the process of reflection clearly intelligible;

but since the length attributed to the curved portion was arbi-

trary, we may suppose it to occupy, as it generally does in fact,

the whole wave-length.

Let ^C be a wave-length, the figure representing part of

a series of positive waves, and also of the contrary negative

waves, in the position which they have at a given instant. The

T
Fig. 6.

actual form of the string at that instant (which is not drawn)

would be found by compounding the two curves. Thus (he

middle point of any ordinate Pp would be a point on the

string.

The nodes- are the points A, B, C, D, &c. on the axis, which

at this instant, as at aU others, bisect the ordinates drawn

through them. Now suppose Pp, P'p' are. any two ordinates

equidistant from any node A; it is evident that the middle

points of these ordinates lie upon a straight line which is

bisected at A; in other words, every straight line drawn through

a node at any instant and terminated both ways by the string, is

bisected by th» node.
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93. Hence, considering a whole waveJength of the resultant

curve, GGGupying two nodal intervals, we see that the half wave

on one side of the middle node is always contrary in form

(Art. 88) to the other half.

Thus the whole infinite string will always have the form of

a series of similar waves divided into contrary halves by alter-

nate nodes ; and the two halves will have exchanged their forms

after every half period.

, The string will therefore appear to oscillate, but there will be

in general no visible appearance of transmission^ of waves in

either direction, the positive and negative- series completely

disguising each other except in the ease in which a consider-

able portion of each wave is straight: in this case only, the

curved portions will appear to be transmitted in contrary direc-

tions ; or, if only a portion of string between two consecutive

nodes be looked at, to be reflected backwards and forwards

from node to node in the manner explained in Art. 90.

94. It has been already explained that, in order to pass from

an infinite to a finite string, we must suppose two nodes to

become fixed. But these may, of course, include any number

of nodes between them. Hence the most general form of the

vibration of a finite string, fixed at both ends, consists in an

oscillatory motion, with nodes dividing the string into equal

aliquot parts. The form of the part included between any

two consecutive- nodes will always be contrary to that of the

adjacent intervals; and any two adjacent intervals exchange

forms after half a period. The wave-length is twice the dis-

tance between consecutive nodes ; and the period of a vibration

is the time occupied by the transmission of a wave over this

double distance. Hence the period is known if we know the

length of the string, the number of nodes, and the velocity of

transmission. /

When there are no nodes between the extreme points, the

wave-length is twice the length of the string, and the period is

the time of transmission over this double length. This is called

simply 'the time of vibration' of the string.

' Hence such waves are often called stationary.
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If / be the length of the (stretched) string, PTits weight, T
the tension by which it is stretched (expressed in terms of the

same unit as W), and g the so-called accelerating force of

gravity (that is, the velocity acquired by a falling body at the

end of a unit of time), then the velocity of transmission of a

lateral wave is v -C?^ i
and the time of a vibration is there-

I IW
fore 2V —Tf, (see below. Art. 123).

95. It may be here said, once for all, that the term ' vibration'

is always to be understood as implying a complete cycle ofchanges.

In many of the most usual cases (as in that of a string) the

vibration may be divided into two parts, equal in duration and

converse in character; and it has been the practice of some

(especially of French) writers to call each half a single vibration,

and the two together a double vibration; or, what is much worse,

to use the term vibration without distinctly explaining in which

sense it is to be understood.

In the case of a common pendulum the habit of giving the

name vibration to what is only half a cycle, namely, a swing in

one direction, has become inveterate.

In this work, however, the term will always mean what

Prof. De Morgan has proposed to call a swing-swang.

Thus, the time of vibration of a so-called seconds' pendulum

is two seconds.

It must be remembered also that a vibration in general is

not necessarily divisible into a ' swing' and a ' swang' of equal

duration and opposite character.

96. We will now proceed to the analytical expression of the

results obtained in the preceding articles.

lif{x) be any function which has one real and finite value

for every value of x, the equationj/ =/{x — vt) will represent

the form of a string which is always bent so as to follow that

of a curveJ/ =/{x), supposing the latter to be moving in the

positive direction of the .^-axis with a constant velocity v. (For

if in the former equation we remove the origin along the axis

to a distance vt, the equation becomes,;' =/{x))
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Similarly _y = F{x -\- vt) represents the transmission of the

form y = F {x), in the negative direction, with an equal velo-

city. Hence the equation

y =/{x ~vf) + F{x + vt)

represents the form of a string in which the displacement of

any particle at the time i is the sum of the displacements due

to both these causes. And ii /(x), F{x) are both periodic

functions, the last equatioii will represent the transmission of

two sets of waves in opposite directions.

Supposing, then, these periodic functions to be expressed

by means of Fourier's series (Art. 71), and to have the same

wave-length 2 /, the equation will take the form

= 2,=i Qsm( ^ + ''<) + 2<=i CiSm( ^ +a,y

(The constant term is omitted, because it could be got rid of, if

necessary, by removing the origin along the axis ofy.)

97. We have not yet introduced the condition of the exist-

ence of nodes. Let us now suppose that there is a node at the

origin ; that is, that when x = o,y = o for all values of /. When
X = o, the terms of the order t in the above series may be

written

. ITSVt , „ „, , ^sm—T— (— CjCOSOj + CjCOSaJ

-f COS—^ (Cj sin a,. + Cj sin a'j),

and it is evident that the coefficient of each must vanish sepa-

rately ; that is,

Ci cos a^ — C"j cos a'j = o,

Cj sin n^ + C'i sin d^ = o.

These equations are satisfied by assuming C^ = C;, d^ = — a^

;

and if we introduce these conditions in the value ofj/ at the end

of Art. 96, and put 2C^co^a^ = A^, 2C^%m.a^ = B^, 2l=VT,

we obtain

y =
2,.=i

sm -^ (^j cos—^ -h Bi sm —;-
) ,

(i)

in which t is the period of vibration. Since y vanishes not
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only when x = o, bat also when x is any multiple of /, for all

values of /, we see that the condition of the existence of a node

is satisfied not only at the origin, but alsd at an infinite number

of points separated from; one ariother by an interval / (or half

i, wave-length).

Heiice this equation Represents in the most general manner

the oscillatory motion of an infinite string described in Art; 98.

And if we confine our attention to values of x between o and /,

it represents the vibration of a finite string of length /, fixed at

its two ends.

98. If the initial form of the finite string, and the initial velo-

cities of its particles, are gi'<fen, the values of the constants A^
B^ are determined. Suppose, for instance, that when / = o, j/ is

J dy
to be a given functiony(.«') frorrl x = o to x = I, and -^" another

given function ^{x) within the same -limits. Putting, theny

/ = o in the equation (i), and in- its differential eoefiieient with

respect to t, we must have

2f=r^iSin'-^=/(4,

2t= oo .7, . tit jC T J / Vt£ism-j- = --<l>ix),
*—

A

/ 2 77

from ^ = o to X = I. Hence, multiplying each side of these

, . i'ttx - . . . .
,

equations by sm —y- ax, and integrating from j; = o to x = 1,

we obtain

' ° IJ ^^^^ ^^"^ "7"
' * " TiTij * ^"^^ ^'" ~7~

(It should be observed thaty(.:v) is necessarily expressible

by means of a series of sines only (see Appendix to Chap. IV,

adfin.); for the forni of the string is at any time half a wave

of a series in which the alternate values are contrary (Aft. 93)',

so that the function f{x)\ besidies satisfying the condition's

/{ml) = o for all integer values of pi including o, must also' satisfy

the conditions /{x + 2 ml) =/{x) arid /(2 ml— x) = —/{x)
;

and these are satisfied by every such term as sin —y-, but not-
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by cos —J-. The same remark applies to ^ {x), ^hich, as is

easily seen h priori, ought to satisfy the same conditions.)

A case frequently useful is that in which the string is initially

at rest, and its initial form is given by an equation

In this case <^ {x) = o, and_/'(x) is the series just given for _>»

;

2 l^ i IT X
and therefore Bf-o, and Ai= =/ j'sin

—

—dx = Cf, hence

the subsequent vibration is given by the equation

^-,=00^ . iitx ziirt
y = ^ ._, Qsm —J- cos ,

where r = — as before.
V

99. Another useful case is that in which the initial form of

the string is a bent line A QB, where AB = /, and a, h are the

coordinates of Q reckoned from A.

Fig, ?.

Suppose further, that the initial velocities of all points are

zero. This is the case- of a String' made to vibrate by being

pulled aside at one point and then left to itself;

Here <^ {x) is o, and f{x) \s, - x from sc = a Xa x = a, and
h

^
—--Jx—l) from X = aio X = I'; and therefore Bi = 6, and

2& i C<^x . iirx ,, ,
I- P, „ . iitx

J. \

.. iito-

„ sin —7—
2bP I

^a{i-a) i"

(The. reader should, obseive that the problem here solved-
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diflfers from that in Art. 76 in this respect, that the bent Une is

here half a wave, whereas there it was a whole wave.)

Introducing this value of ^^ in equation (i), we obtain

„ sin —f- . .

2 or --,1=00 / . tTTX 2nrt ,

->' = ;?^(73^2,=i-7^sm— cos-^, (.)

which gives the form of the vibrating string at the time /. (On

a particular case of this formula see below, Art. 118.)

100. It is easy to trace geometrically the variations of form

during a vibration. The equation

y=/{x-vf)+F{x + vt),

and its differential coefficient with respect to /,

-£= — »/'(•* - ^t) + vF'{x + vi)

give, when / = o,

y-/{.x)+F{x)

^£=-v{f{x)-F{x)\

and these expressions must coincide, from x = o\.o x = 1, with

the given, functions which define the initial positions and velo-

cities. Hence, supposing the initial value of_y to be </> (x), and

of -^ to be » ^'. {x), we have

, f(x)^-F{x) = <^{x\

f (x) - F' i^x) = -
V'' (.x\,

whence f{x) — F {x) = C — ^ {x).

These equations give (the arbitrary C being taken = o)

f\x) = i (<^ (^) - V' {X) ), F{x) = \ \^ {x) + ^\x)),

so that_/"(j;) and F^x) are known from x = o to x = l. That

is, one half of the positive and one half of the negative wave

are given in the position in which they produce by composition

the initial form of the string. And since, in order to maintain

the nodes at its extremities, the half of the negative wave to the

right of the string must be contrary in form (Art. 88) to the

given half of the positive wave, while the half of the positive

wave to the left of the string must be contrary to the given half
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of the negative wave, a whole wave of each is determined. And
we have only to shift the positive wave to the right, and the

negative to the left, through equal distances, and compound

those parts which fall within the limits of the string, in order to

find the form at the time corresponding to that amount of

shifting.

101. The case treated in Art. 99 affords an easy and inte-

resting example. The initial velocities being zero, we have

•^ {x) = o, and we may therefore take i/^ {x) - o ; hence

/{x)=F{x) = k<l>{x);

that is, the given halves of the positive and negative wave coin-

cide, and the ordinate at any point of each is half the ordinate

of the corresponding point of the string in its initial form

.

Hence, completing the waves as in the last article, we have the

following forms and initialpositions :

Fig. 8.

APB represents the halves of the positive and negative waves,

coinciding when t=o. ap A is the other half of the positive,

and B qb oi the negative wave. A, B are, as before, the ends

of the string, and the initial form is that given by compounding

the two ' curves' which coincide in APB; that is, by doubling

the ordinate, at every point.

After the lapse of a quarter of a period, the waves will have

been shifted (one to the right and the other to the left) through

a distance equal to half the length {AB) of the string; and

that part of the figure which is within the hmits AB will have

been changed into the following

:

Fig. 9.

o
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And from this we obtain by composition the following as the

form of the string at that instant

:

Fig. lo.

At the end of half a period the form will be evidently con-

trary to the initial form, the two half waves again coinciding

;

and at the end of three-quarters of a period, the form will be

that of the last figure reversed right and left (as it would be

seen through the paper from the back).

If the original p>oint of flexure be at the middle of the string,

the form at the end of the first, third, &c. quarter of a period

will be a straight line. But in other cases the string will always

be divided into either two or three straight portions, viz. three

in general, but only two at the instants when the positive and

negative waves coincide, and also at the instants when a summit

of each is opposite the same end of the string,—in all, four

times in each vibration.

dy
The value of -r— at either end of the string varies discon-

tinuously in a remarkable way. This may be traced geome-

trically without difficulty, but the following mode of proof

affords a good example of the use of Fourier's series.

dy
Putting X = o in the value of -^ derived from (a), we have,

at that end of the string,

dy 2 hi ,^i=oo I .lira ziirt
-5—= 77 r^. , -. sm—r-cos . (3)dx Trail— a) '*'»=i t I T

Now the series 2,1" C'^ cos evidently represents a pe-

riodic function of which the period is r, and which satisfies the

condition /{t) =f(T — /) ; and any such function can, with

the addition if necessary of a constant term, be represented by

such a series. We may include the constant term by extending

the summation to ?' = o

.
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Consider, then, a function/" (/) of which the value is

c from / = o to / = a

;

k from /=ato t = T — a;

c from t = T — a to /=T.

Assuming/(/) = 2^-"" Cj cos ^-^ , we shall have

c„

Ci = - f(t) cos a/,

for all values of i except o. Performing the integrations in

separate parts (as in finding ^^ in (2)), we find

T

/-, 2 (c — k) . 2 {na ,

Cj = —
: sm when i is not o.
Z IT T

Hence the discontinuous function /{i) is represented by the

series

k-\ {c — k) + -^ i^r-sin cos .

which will be identical with (3) if we assume a, k, and c so that

k^- --{c-K) = o, — = -, c-k = —-—-
,

T T I a (I — a)

from which we find

5 5 ar

a I— a 2 /

and it follows that the string, at the point A (Fig. 7, Art. 98),

d T
maintains its initial direction A Q from / = o to / = —

-,
(that is,

2 /

during the time of wave-transmission along a distance a), it

then suddenly becomes parallel to QB and maintains that direc-

tion until t = (i ^) r, when it resumes the first direction

until the end of the period t, and so on successively. The
representation of these changes by a diagram in which the

G 2
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abscissa and ordinate are proportional to / and to the value of

dy
-3— at ^ (or_/(/)) is obvious, and may be left to the reader.

(See Helmholtz, p. 93, where a greater number of interme-

diate forms of the string is given, and a diagram representing

dv
the values of -i- at one end, which is taken as the curve ofdx
pressure (or rather of variation of pressure) on a bridge sup-

posed to support the string at that end. The variations of

dy
pressure are sensibly proportional to those of -j-, as will be

seen in Chap. VII.)



CHAPTER VI.

VIBRATIONS OF A STRING {continued).

102. The most general form of the infinitesimal vibrations

(in one plane) of a string is given by the equation (i) of

Art. 97, which, by a transformation inverse to that employed

in Art. 72, may be written thus

:

«=i
CiSm^-cos{-^ + a,), (13)

where x is the distance of any point in the string from one

end, andJ/ is the lateral displacement of that point at the time /.

This displacement is therefore the sum of the displacements, in

general infinite in number, represented by the several terms of

the series ; and the vibration of the whole string may accord-

ingly be said to be compounded of the vibrations represented

by those terms.

'Let us then consider separately the vibration represented by

the term of the order t. Supposing this term to exist alone,

we have, instead of (13),

y = Ci sm —J-
cos \^-^ + a^)

,

and the form of the string at any time is therefore a harmonic

curve cutting the axis in fixed points or nodes, which divide

the whole length into i equal parts, while the amplitudes of the

waves of the curve vary periodically with the time, and every

individual point (except the nodes) performs harmonic vibra-

•tions with the same period -. Thus, the motion of the whole

string is an oscillation with nodes, of the kind described in



86 Harmonics of a String.

Art. 93, but with this distinction, that the waves are of the

harmonic form.

Now if, returning to the general equation (13), we suppose

all the coefficients preceding Q to vanish, the rest remaining

arbitrary, there will still be the same number of nodes, and the

period of the vibration will still be -
; but the form of the waves

may be any whatever, as in Art. 93.

If Cj is not zero, there are no actual nodes (except the fixed

ends), and the first component of the vibration consists in an

oscillation of which the period is t and the wave-length is twice

the length of the string.

103. When a string, vibrating without nodes, produces an

audible note, the lowest component tone heard is in general

that of which- the pitch corresponds to the period t of the whole

vibration, and this is called the fundamental tone of the string.

But other tones, belonging to the harmonic scale of this funda-

mental tone, are in general heard also. (If, however, the period

T is so long that the fundamental tone does not fall within the

limits of audibility, the lowest tone heard will of course be one

of the higher components.)

If there is one node, the period becomes -, and the lowest
2

tone heard is the octave of the fundamental tone.

And in general, if there are i — \ nodes, the period is -, and

the lowest tone heard is the {i— i)"^ harmonic of the funda-

mental tone.

But in each case higher harmonic components are in general

heard, so that the sound is a compound note.

The notes produced by a string vibrating with one or more

nodes, are called by musicians the harmonics of the string.

104. Now, when the string vibrates without nodes, so as to

produce what is called its fundamental note, the series of har-

monic component tones is in general complete so far as it can

be traced by the ear; and a practised ear, properly assisted

(see below. Art. 115), can easily distinguish ten or more. But

we are able, as we shall see presently, to make a string vibrate
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in such a manner that for any proposed value of i all the

coefiScients C^, C^^, Cg,-, &c. in the series (13) shall vanish; so

that the component harmonic vibrations of which the periods

T T
are -., —., &c. are extinguished. And it is found, as a fact,

that when this is done, iAe corresponding tones become either quite

or nearly inaudible.

105. From the facts stated in the last two Articles it is

obvious to infer that each component tone actually heard, is

produced exclusively, or at least mainly, by the corresponding

component harmonic vibration of the string ^-

But to appreciate the force of this conclusion, we must con-

sider the phsenomena more precisely.

106. The vibrations in the ear which ultimately produce the

sense of sound, are very remotely derived from those of the

string. In the first place, the sound-waves in the air are

excited in a very slight degree by the string itself. This may
be shewn by stretching a violin or pianoforte string between

two very firmly fixed supports— for instance, iron pegs in a

wall—when it will be found impossible to make it yield a note

of any considerable strength. In all actual stringed instru-

ments, therefore, the supports of the string are so arranged as

to communicate a state of forced vibration to a considerable

surface of wood. Then this vibrating surface originates waves

in the air ; and these, being propagated to the tympanic mem-
brane of the ear, put that membrane itself into a state of forced

vibration, which is further communicated, by means of the link-

work of small bones mentioned in Art. 4, to the membrane of

the oval window; and finally, from that, through the fluid of

the labyrinth, to those parts of which the vibrations ultimately

affect the auditory nerve.

Evidently, therefore, it is essential to inquire, by what law

the form and period of vibrations excited at any part of a

material system by given vibrations maintained at any other

part, are connected with the form and period of the latter.

' For a discussion of the question, What sort of vibrations produce simple

tones ? see the Memoirs of Ohm and Seebeck, in Poggendorf, vol. lix. p. 49 7

;

Ix. 449 ; Ixii. I.
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107. The answer to this question is contained in a statement

of the law offorced oscillations. (See Appendix to this chapter.)

If a. material system, acted on by a conservative system of

forces S be very slightly disturbed from a configuration of stable

equiUbrium, and then left to itself after having had very small

velocities (or none) impressed upon any of its particles, it will

continue for ever to execute small oscillations; that is, every

particle (except such as may remain at rest) will describe a

path in which it will always be very near to the position which

it had in the condition of equilibrium. The motion may or

may not be a vibration, in the proper sense. That is, the

system may, or may not, pass again and again at equal intervals

of time through the same configuration.

108. If, however, the displacements and velocities are always

so small that their squares and products may be treated as

insensible, then the motion is sensibly either a true vibration,

or else is compounded of vibrations each of which might subsist

by itself, but of which the periods are in general incommen-

surable; so that by their superposition they produce a non-

periodic motion, or more properly, a vibration of infinitely long

period.

We may call these component vibrations the natural \'ibr&-

tio'ns of the system, to distinguish them from the forced vibra-

tions which are now to be considered.

109. In addition to the suppositions just made, let us now

further suppose, either that certain points of the system are

subjected to small obligatory periodic motions, or else to the

action of small periodic forces; that is, forces of which the

intensity is expressed by the product of two factors, one of

which may be either constant or dependent on configurations,

and the other is a periodic function of the time.

In either case, provided that all the displacements and velo-

cities continue to be of the order of magnitude above supposed,

the whole motion is compounded of two sets of vibrations:

^ That is, a system in which the mutual action between any two particles

is independent of the velocities of those and of all other particles. (Thom-
son and Tait, § 2"]!.)
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one which as before may be called natural, of which the periods

are independent of the imposed motions or forces, and which

might be entirely extinguished by a proper choice of the dis-

posable initial displacements and velocities; and another set

which are forced by the imposed motions or forces, and which

are permanent, and in no way dependent on initial circum-

stances.

And it can be shewn that no forced vibration can have any

harmonic component of a period which does not exist amongst the

periods of the harmonic components of the imposed motions orforces.

110. We have so far supposed the original system of forces

to be conservative, so that the natural vibrations, if once begun,

would continue for ever. But in all actual cases there are

resistances of various kinds, which sooner or later extinguish

the natural vibrations. There is thus an apparent destruction

of energy ; but the energy is not really destroyed, but changed

into other forms, which can in general be assigned, such as

heat, &c. '

When, however, we only wish to take account of the energy

of the system in the ordinary mechanical sense, we have to

introduce these resistances under the fictitious form of forces

of the non-conservative class, that is, forces which are not inde-

pendent of velocities; and on a particular hypothesis, which

there is reason to believe gives sensibly correct results for small

velocities, namely, that the motions of the particles are resisted

by forces directly proportional to their velocities^, no addi-

tional difficulty arises in the mathematical treatment of the

problem, but the result is modified in the following manner.

' It must be understood that the word ' resistance' is here used to denote

any cause which tends to extinguish that particular kind of motion which
constitutes the vibration considered. In the case of a vibrating string, for

instance, the resistance of the air is one such cause ; another is the com-
munication of motion from the ends of the string to the bodies which
support its tension ; and a third is probably the conversion of part of its

energy into heat. The hypothesis is, that the combined effect of these

causes may be represented by assuming a retarding force to act on each

particle, directly proportional to its velocity ; and it is at any rate certain

that results calculated on this hypothesis agree in general much better with

experience than those obtained by neglecting resistances altogether. Any
other law of resistance would introduce insuperable difficulties in.to the

mathematical treatment of most cases.
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The periods of the natural vibrations are altered (in general

slightly), without ceasing to be constant; but their amplitudes

diminish rapidly, so that the system is soon brought sensibly

to rest, if there are no obligatory motions or periodic forces.

If, however, there are, as we have above supposed, small

periodic forces or obligatory periodic motions, the system soon

assumes a permanent condition of motion, consisting of vibra-

tions (which we will c^iSiforced, as before) of which the periods

are connected with those of the imposed motions or forces

according to the law already stated ; and there is no trace of

the natural vibrations except this : that the amplitudes andphases

of the forced vibrations depend upon the relative magnitudes

of their periods and those which the natural vibrations would

have if they existed.

111. If any harmonic component of one of the imposed

motions or forces have a period nearly equal to that of a har-

.monic component of any one of the natural vibrations, then

there will be a corresponding forced vibration with a large

amplitude. On the supposition of no resistances, and of abso-

lute equality of periods, the amplitude in question would go on

increasing with the time, so as soon to violate the supposition

of small motions. But in all actual cases the effect of the

resistances is to limit the increase of the amplitude to a definite

magnitude, which, however, may still be larger than is con-

sistent with the supposition referred to.

112. In fact, in a great numlser of cases, the supposition that

the squares and products of displacements and velocities may

be neglected leads to results which agree well, as a first ap-

proximation, with experiment, but fail to explain phaenomena

of a delicate but still perceptible kind, which can be accounted

for by a second approximation.

The result of this second approximation shews that there are

in general forced vibrations of which the amplitudes are small

magnitudes of the second order, and of which the harmonic

components have periods which are either the halves of the

periods of harmonic components of the imposed motions or_

forces, or are such that the numbers of vibrations in a given ,
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time are the sums or differences of the numbers of vibrations

of the latter taken two and two.

113. We shall shew afterwards how this result accounts for

the remarkable phsenomena of so-called ' combination-tones.'

At present we see that, so far as the first approximation goes,

we are entitled to assume that the vibrations which ultimately

affect the auditory nerve have no harmonic components differ-

ing in period from those of the vibrations of the body from

which the sound originates. And when we compare this theo-

retical conclusion with the observed fact that the extinction of

any harmonic component of the vibration of a string, extin-

guishes (very nearly, if not entirely) the sensation of the cor-

responding tone, the inference appears unavoidable that the

sensation of simple tone is produced by simple harmonic

vibration.

114. We will now describe some simple experiments which

exhibit the accordance of the theory of vibrating, strings with

facts.

In the first place, the isochronism of small vibrations (that

is, the independence of their periods on their amplitudes) is

shewn by the familiar fact that a given string produces a note

of sensibly the same pitch, whether it be made to sound loudly

or sofdy, provided the variations of loudness do not much

exceed the limits usually allowed in music.

The point next in importance is the verification of the com-

pound character of the note usually produced.

The following is an easy method of making some of the

principal harmonic component tones sensible to an unpractised

ear ; or, rather, of making the ear conscious that it hears them.

*Strike any note of a pianoforte rather strongly, say c, and

hold the key down so that the vibrations may not be stopped

by the damper. (The two or three strings belonging to the

note should be tuned well in unison.) Immediately afterwards

strike very gently any note belonging to the harmonic scale

of c, holding the key also down. Then, if the attention be

fixed upon the sound of this latter note as it dies away, it will

be heard to remain as a component of the note first struck j
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and so distinctly, that it will often appear quite surprising that

what is now a conspicuous phsenomenon-should have entirely

escaped observation before attention was thus directed to it^.

In this way eight or ten harmonic component tones may

generally be distinguished. An ear which has been musically

trained will soon acquire great facility in tracing these harmonic

tones, up to a certain number varying with circumstances,

without any assistance. But, in order to distinguish the higher

and fainter ones, it is necessary to put the ear in communica-

tion with resonators, the action of which may be here briefly

explained.

115. They are usually made of glass or brass, in the shape

of nearly spherical bottles. The neck of the bottle is short,

and so formed that by coating it with sealing-wax it may be

made to fit closely into the outer part of the meatus of the ear.

There is another orifice, opposite to the neck. When such

a resonator is applied to the ear, it forms, with the meatus as

far as the tympanic membrane, a cavity with one opening ; and

the air in such a cavity is capable of vibrating with a deter-

minate period, which depends on the form and size of the

cavity and of the opening.

Suppose now that there is an external vibrating body in the

neighbourhood, the air in the cavity wiU be put irito a state of

forced vibration, of which the component periods will be those

of the harmonic components of the vibrations of the external

body, but of which the amplitudes will in general be incon-

siderable. But if the period of any one of these harmonic

components coincide exactly, or vej-y nearly, with that of the

natural vibration of the cavity, the amplitudes of the forced

vibrations will be large (Art. Ill), and the ear will hear that

particular component with great distinctness, and indeed often

with unpleasant loudness. In order to obtain this effect in the

highest degree, the other ear should be closed.

116. We shall have to refer afterwards to the general prin-

ciples of resonance, and to the use of these resonators in

particular.

» Helmholtz, p. 86.
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Imperfect substitutes for them may be made of paste-board,

and the following is an easy way of roughly illustrating their

action. If a stiff paste-board tube, of about i;|^ inch in dia-

meter, and of any length, from three or four inches upwards,

be pressed with one end closely upon the ear, the tube and ear

together form a cavity open at one end; and the note cor-

responding to the natural vibrations of this cavity is easily

ascertained by tapping the outside of the tube with the ends of

the finger-nails or with a pencil. The sound of the taps is not

a mere noise, but has a determinate pitch, which, however, an

unpractised ear is liable to estimate an octave too low. If, now,

the corresponding note be struck on a pianoforte, and the

coincidence of pitch be nearly exact, the effect of the tube in

strengthening the fundamental tone of the string is very con-

spicuous, and may be made still more striking by alternately

removing and replacing the tube. And if any other note be

struck of which one of the stronger harmonic components has

the pitch corresponding to the natural vibrations of the cavity,

the strengthening of that component may be made more or

less strikingly sensible in the same way.

By tilting the tube, so that it ceases to touch the ear all

round, the pitch of the natural vibrations is raised, and can

therefore be brought into coincidence with that of a higher

tone. In this manner, by different angles of tilting, the same

tube may be made to strengthen several harmonic components

of the same note ; and so, by tilting it backwards and forwards

between complete contact and a considerable opening, this

series of tones may be heard upwards and downwards several

times before the vibrations of the string once struck cease to

produce audible sound. This experiment requires a little care

and practice, but when successful is very striking.

117. The vibration of a string with nodes is easily shewn on

any instrument of the violin species, or on a horizontal piano-

forte. In the latter case, if a key be struck and held down,

while a finger is lightly applied at a nodal point, the string will

sound the corresponding harmonic instead of its fundamental

note. Or the finger may be applied after the key is struck, in
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which case the fundamental tone, which is heard at first, is

extinguished, and the harmonic remains and is heard alone.

Thus, if the fundamental note be c, and the finger be applied

at one-third of the distance from either end of the string, the

harmonic note g' will be heard. In this case there are two

nodes, and the existence of that one which is not touched by

the finger may be shewn by placing on the string a small bent

strip of paper : if it be placed at any point except the node, it

will be shaken when the key is struck ; but if at the node, it

will remain undisturbed.

The harmonic notes of a harp string may be produced in the

same way, and the first of them (or octave) is sometimes used

by harp players.

The production of harmonic notes on the violin or violon-

cello, by touching the string lightly with the finger at the place

of a node, is familiar to players on those instruments.

It is obviously essential to the production of harmonics that

the point at which force is applied to make the string vibrate

(whether by a hammer, the finger, or a bow) should not be

a node.

118. It was stated above (Art. 104) that a string may be

made to vibrate in such a manner that any proposed harmonic

component vibration, with all those whose periods are aliquot

parts of the period of that one, shall be extinguished.

This follows from the formula (2) of Art. 99 ; for if in this

formula we suppose a = —I (— being a proper fraction in

lowest terms), that is, if we suppose that the string is made to

vibrate by being plucked at any one of the points which divide

it into n equal parts, all those terms in the series vanish for

which i is a multiple of n, and therefore the component vibra-

T T T
tions of which the periods are - , — , — , &c. do not exist.

« 2 « 3«
It was also stated that when this is done, the corresponding

series of harmonic tones becomes nearly or quite inaudible^

' This fact was discovered by Dr. T. Young. See his ' Experiments and
Inquiries respecting Sound and Light,' Phil. Trans, for 1800, p. 138.
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119. To shew this experimentally, it is only necessary to pass

the point of the finger very lightly across a,pianoforte or violin

string. This should be first done at a point not coinciding

with a node in some proposed division, for instance, at a point

not dividing the string into three equal parts, and the attention

directed to the corresponding harmonic (in this case the third

component, or 'twelfth' above the fundamental tone), so that

it may be heard distinctly. Then, if the finger be passed

across a node, the absence of the same harmonic will be

unmistakeable.

The following is an easy and striking way of making this

experiment. Pluck the string alternately, with a finger of each

hand, at its middle point and at a point one-third of its length

from either end. These points must be taken very exactly,

and the fingers passed lightly across the string. Then along

with the fundamental tone will be heard very distinctly the

twelfth when the string is plucked at its middle point, and the

octave when it is plucked at the other point. Thus, if the

third ^ or d' string of a violin be used, the tones a", d", will be

heard alternately.

^ The fourth string, which is covered with wire, does not answer so well.

The wire covering appears to have the effect of immediately re-establishing

the component vibrations which at the first instant were extingviished by
the pluclc.
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ON FORCED OSCILLATIONS.

(The following is to be taken only as a slight sketch of the

subject, in which many points of interest are omitted. For

more complete details on that part which relates to natural

oscillations, see Thomson and Tait, § 343. The process here

given only differs from that employed by those authors in

modifications of detail, and in the extension to the case in

which the system is subjected to obligatory motions.)

If X, y, z be the coordinates of any point of a material

system referred to fixed rectangular axes, the differential equa-

tions which define the motion of the system under the action

of given external forces are to be derived from the formula

^m{x"hx-\-y"ty-^^'hz) = ^{Xh x + Yhy -^r Zhz), (i)

where accents signify total differentiation with respect to /, and

the summation extends, on the left hand to every particle m,

and on the right hand to every point at which an external force

is applied. X, V, Z are the components of the force applied

at the point x,y, z.

This formula expresses the proposition (known as D'Alem-

bert's theorem) that the system is at every instant in a con-

figuration of equilibrium with respect to the applied forces and

the resistances to acceleration arising from the inertia of the

particles. When the system is not entirely free, the possible

motions of the particles are limited by equations of condition

;

and hx, hy, &c. in (i) represent any arbitrary infinitesimal

alterations which could, at the time /, be made in the coordi-

nates X, y, &c. without violating those equations. In other

words, the equation (i) must at every instant subsist for values

of 8x, &c. corresponding to any arbitrary infinitesimal dis-

placement which the system could at that instant undergo
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without violating the conditions which limit the freedom of

its motion.

When the equations of condition contain the time / explicitly,

the expression 'configuration of equilibrium' at any proposed

time is to be understood as meaning that which would be a
configuration of equilibrium, if i, in the equations of condition,

became constant, with the value which it has at the instant in

question. (Thus, if a particle be constrained to move on a

surface which is continually changing its form, it is in a con-

figuration of equilibrium at any instant if the force applied to

it is in the direction of a normal to the surface at that instant.)

We may call the equilibrium relative when the equations of

condition contain / explicitly, and absolute when they do not.

Our present object is to consider the case in which the equa-

tions of condition contain / explicitly, only because given points

of the system are subject to obligatory motions, so that the

coordinates of those points are given functions of t. This, it

should be observed, is only a generalization of the common
case in which given points of the system are fixed. In either

case the terms referring to those points disappear from both
sides of the formula (i), because, whether a point is fixed, or

subject to an obligatory motion, it could not, at any proposed
time, receive any displacement without violating the condition

imposed upon it ; hence hx - o, &c. for all such points.

Suppose, now, we refer the system to a set of independent

coordinates Ij, ?2) o^ ^1^7 kind, that is, quantities of which
the values at any time would determine the configuration of the

system at that time, but could be all assumed arbitrarily without
violating the equations of condition.

The transformation to the Lagrangian form* of the difi"eren->

tial equations is in no way affected by the suppositions now
made, so thai we shall have as many equations of the second
order as there are independent coordinates, viz.

:

fdTs' dT
^df)-JJ, = ^- ^'- (^)

on which equations, however, the following observations are to

be made.

T'is the expression, in terms of the new variables |j, &c. of

the summation extending to all coordinates which appear on
the left-hand side of (i). The coordinates of those points

' See Price, Inf. Cat., vol. iv., § 302.

H
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which are subject to obligatory motions therefore do not appear

in ^as expressed in terms of x,y, z, &c.

Let us denote by x, y, z, &c. the original coordinates of those

points which are subject to obligatory motions. Then the

relations between the old and new variables will enable us to

express each of the other coordinates x,_}>, z, &c. as a function

of ^1, 4) • • • ^nd X, y, z, &c. ; suppose, for instance,

x = ^ (^1, 4. • • X, y, z, • )

;

, ax ,, ax ,, ax ,

and when these values are substituted in the original expression

for T, the result is evidently a function which is homogeneous,
and of the second degree, with respect to ^\, ^'^ + . . . x', /, . .

.

Now X, y, . . . x', /, . . . are given functions of /; and when
their values are introduced T is no longer homogeneous with

respect to ^'j, ^'g, ... and also contains t explicitly.

(This new value of T is merely the kinetic energy (or half

vis-viva) of the whole system expressed in terms of the inde-

pendent coordinates.)

For the present, however, we will suppose T to be expressed

in terms of ^'j, . . ., x', . . . ., so that we may assume

+ ^fj; + . . . + T^\ x' + . . + i7x>' + . .

.

(3) ,

where the coeflScients P, Q, &c. are given functions which may
contain all the coordinates, but not their differential coeiEcients

I'l, &q-

The functions Hj, S^, ... in equations (2) are to be found!

by means of the equation

Xbx + rby + Zhz + ... = Si^b^-^ + S^hi^ + ..., (4)

which gives

</|l iSf^j rf|i

so that X, y, ... being given functions of the original coordi-

nates, Sj, &c. are known functions of the new coordinates, con-

taining also in general x, y, &c.
We have now to introduce the supposition that the obligatory

motions consist of small vibrations. Let us assume, for in-

stance, that the point .^x, y, z) is subject to a vibration, so that

x = x„-t-aa!, y = yo + °^, z = z„ + aw;

where x^, y^, z„ are constants, u, v, w are given periodic func-
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tions of /, and a is a constant which may be considered a

small quantity of the first order. We may call (x„, y„, z^) the

mean position of the point (x, y, z) ; (the point (x, y, z) would
become fixed at (x^, y„, Zj) if a were =0).

Next we will suppose that the system is always nearly in

a configuration of absolute stable equilibrium ; that is, that the

values of the coordinates ^j, ^2, ... only differ by quantities of

the first order from values (which we will denote by (IJ &c.)

which would belong to a configuration of stable equilibrium if

a were = o.

The excursions of the particles being of the first order, we
make the further assumption (which must be justified^ a pos-

teriori) that the differential coefficients ^\, &c. are also of the

// T
first order. Hence T is of the second order. But -j-rr , &c.

are of the first order, while -77-, &c. are of the second (since

^1, &c. only occur in the coefficients P, &c.). Hence, if we
retain only terms of the first order, we must reject the terms

-JJ-, &c. in the equations (2).

Moreover, it is evident that in the coefficients P, Q, &c. we
may put x„ for x, &c. and the equilibrium values for Ij, &c., so

that those coefficients will receive constant values. Hence we
may take

T= k [i> i] i\' + i b, 2] I? + . .
. + [1, 2] r, f, +

+ «! i\ x' + 3j I'l y' + fj I'j z'

+ terms in x', /, . . only, which will disappear in forming

equations (2).

Hence the left-hand member of the first of equations (2)

becomes

[i,i]ri+[i,3]n+[i,3]r3 + ... + «iX" + 3,y"+.,z",

and of the second equation

—

[2, i] f'i + [2, 2] k\ + [2, 3]f'3 + . .+ fl^ x" + 3^
y" + c^ z",

and so on. In these equations the symbols [r, i], &c. as well as

flj, &c. merely denote given constants, and [i, 2] = [?,i], &c,

' The justification is this : The motions of the particles consist of isochro-

nous vibrations, from which it follows that the velocities may be diminished

indefinitely by diminishing the amplitudes. The supposition of small velo-

cities therefore merely implies a certain limit to the allowable magnitude
of the amplitudes.

H 3



lOO Forced Oscillations,

With respect to the right-hand members of (2) we observei

that, ptitting as before (li), &c. for the equilibrium values of

^, &c. we shall have, by Taylor's theorem, as far as terms of

the first order,

»,-w+a-(i,))(g')+«.-«.))(g;)+-

+'(-(S)+'('^)+"(S)).
where brackets signify values corresponding to equilibrium

values of the coordinates.

Now, when the variables have equilibrium values

2 (Z 8 jt + FSj/ + Z 8 z) = o,

and therefore

But since 8|j, &c. are independent and arbitrary, this implies

(Sj) = o, (g,) = o, &c.

Further, it is evident that we may assume the zeros of the

coordinates Ij, &c. in such a manner that their equilibrium

values (li), &c. shall = o. Hence, if we denote the constants

(-7^^ , &c. by letters A, B, &c. the first of equations (2) will

become

[1,1] i\ + [1,2] i\ + . . . + a^ X" + 3, y" + qf
= A^^^ + AJ^ + ... + a{/u+gv + hw).

Now X ='x„ + au, Ssc. so that x" = a «", &c. We have also

supposed that u, v, w are periodic functions of /, and therefore

each of them may be expressed as a series of simple harmonic

terms by means of Fourier's theorem. Suppose sin(«/ + /3)

occurs in the value of x, then it will also occur in x"; and we

now see that, putting D for -^, we may write the above equa-

tion in the form

([i,i]Z)^-^,)li+([i,2]Z)2-^,)f, + ...=>Jsin(«/+^)+ ...,

the right-hand side consisting entirely of harmonic terms of

different periods, multiplied by small coefficients. The second

equation will be of the form

([2,i]Z»^.-5,)|,+ ([2,2]Z)2-^,)4+ ... = /sin(«/-f-y) + ...,

and so on. Thus we shall have a set of simultaneous differen-
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tial equations of the second order, as many in number as there

are independent coordinates.

We will now, however, introduce the further supposition of

small resistances varying directly as the velocities of the par-

ticles. This does not add any difficulty to the integration of

the equations, and leads to results more in accordance with

experience.

This supposition is equivalent to writing jf — t-j-, &c.

instead of X, &c. in some or all of the terms of the original

formula, e being a small constant; and it is evident that the

effect of this will be, when terms of the second order are

neglected, to add to 3^, &c. linear functions of i\, I'g, &c. with

constant coefficients; and transposing these terms to the left-

hand side of the differential equations, we shall have (using

(2j, &c. in a new sense),

—

= >4sin(«/+/3)+.

.

([2. i] i5H3i i?-A) li+([3. 3] -OH^, Z»-^.) ^2+ -
•

•

= /sin(«/-)-y)-|-.

.

which are the differential equations of the problem.

This system of equations may be treated in several different

ways, of which the following appears most convenient for our

present purpose.

Adopting abbreviations for the operative symbols, we rnay

write the equations thus:

[a fl] li + [a 3] I2 + . . . = >5 sin («/-)- 0) +,

.

[3 a] Ij + [3 <5] ^, + . . . = / sin (»/+ y) + .

.

(where it is to be observed that [<z J] is not the same as [3 a]).

Let V be the determinant

\aa'\,

\ba\

\ca-\,
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be eliminated; and, observing the effect of differentiation on

the periodic terms in the right-hand members, we see that the

result will be

V li
= ^sin («/ + £) + .

.

<5)

and in like manner

K, K' L, &c. being known constants, and K, K', .

.

. small.

To integrate these equations we first suppose their right-

hand members to be absent, so that all the variables |j, i^, ...

satisfy the same differential equation, which we may write

V « = o,

and which is of the order 2 w, if ot be the number of the inde-

pendent coordinates li, &c.

If we put for a moment v =f{p), and call a^, u^, a,,

. . . a^m the roots of the equation f{x) = o, then we know that

the general solution of v « = o is

Cj, C2, ... C^m being arbitrary constants'. Hence the values'

of the variables Ij, |,^, ... are of this form, differing only in the

values of the constants Cj, &c. ; but since the complete solution

of the system can only contain 2 m arbitrary constants, those

in the values of Ij, &c. must be expressible as functions of those

in li. The relations necessary for this purpose would have to

be ascertained by substituting the expressions for $, , &c. in the

original system of equations of the second order. We have no
occasion, hoWever, to perforni this operation actually.

Considering now the value of any coordinate, say

^i=CieM+ ,

we see that the motion cannot consist of permanently small

oscillations, unless the roots of the equation /{x) = o consist

of imaginary pairs, and the real part of each pair be negative,

so that the value of |j may be put in the form

k = ^i^""!' sin (w,/+ ^i) + C.f—s^sin (wj/+ fi,)+... (6)

(where Oj &c. are used with a new meaning). The factors

€-"1' &c. are introduced solely by the resistances, as is evident

if we observe that the differential equations would only contain

even powers of D if there were no resistances.

The above values of I,, &C. determine the natural vibrations

of the^ system, such as^ could exist if the obligatory vibrations'
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were suppressed by fixing the points subject to them ; and they

are compounded of harmonic vibrations, each of which could

subsist alone. We see also that the effect of the resistances

would be gradually to diminish the amplitudes of the vibrations

so that the motion would be ultimately extinguished.

We have thus obtained the complete solution of the system

of equations (5) &c., on the supposition that K, K', &c. are

all o. And the solution of those equations in their actual form

may now be found as follows

:

Assume, for the complete value of ^^, the terms in the ex-

pression (6)

+ ^sin(«/ + Z) + -5 cos {nt + Z)+...

where A, B ... are constants to be determine'd.

(A similar pair of terms is to be assumed for every term on
the right-hand side of fs) ; but as the following process would
merely have to be repeated for each pair, we shall attend only

to the first.)

Substituting this value of l^ in (5), and observing that the

operation v destroys the part (6), we obtain the condition

A V sm.(nt-\-L)+B v cos {»/+£) =^sin (ni+Z) (7)

for the determination of A and B.

Now the operation v , consisting partly of even and partly of

odd powers of D f or — j , may be put in the form

^ = <p {!)')+ 1)X(D%
where the second term is introduced entirely by the resistances,

and if they are considered as small quantities of the first order

the terms depending on them in (p (-0^) will be of higher orders,

so that (j> (D^) may be considered as what v would be reduced

to if there were no resistances. The result of the operations on
the left-hand side of (7) is easily seen to be

{A
<i>
{-nF)-Bnx (-«')) sin {nt^L)

-f {Anx{.-n^) +B^{—n^)) cos («/+Z),

and this is to be identical with ^sin (ni+L) ; hence we must

have A<t>(-n')-Bnx(-n'')=K,

Anx(-n^)+, B<j> (-«') = o;

from which we find

A -B K

and when the values -of A and Bjhns given are introduced in
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the expression assumed for li, it becomes (after an obvious

reduction)

|, = Cje-'i«sinK/+^i)+---

+ —. — Tsin(»/+Z+ e)+..., (8)

6 being a constant of which we need not write the actual value.

Thus we see that the effect of every harmonic term, in the

obligatory vibrations is in general to add to the value of each

coordinate a term with the saihe period ; and these added terms

represent the/breed vibrations of the system. The other terms,

^hich are the same as \i K = o, &c. give the natural vibrations,

but these in general soon become insensible through the di-

minution of the factors e-"i', &c. introduced by the resistances,

while the forced vibrations are permanent.

It is important to observe that it follows from the nature of

the whole process that no periods will be introduced in the

forced vibrations which do not exist in the harmonic com-

ponents of the obligatory vibrations, so long as terms of the

first order only are considered, because no periodic terms are

ever multiplied together.

With respect to the amplitudes of the forced vibrations, we
see that those will be large of which the periods are such that

the denominators of the' coeflScients in (8) are small.

Now in the expression

the second term is introduced by the resistances, and is there-

fore small ; hence the vibration, (of which the period is —J,

will have a large amplitude if n be such that i^ ( — «^) = o ; but

the roots of the equation <^ {x^') = o give the values of

+ OTjV — I, &c.

on the supposition that there are no resistances, so that on that

supposition ^ {—m^) = b, &c.

Hence it follows that the amplitude of any component of the

forced vibration will be large if its period coincide with that

which would belong to a component of the natural vibrations if

there were no resistances. And since the effect of the resist-

ances in altering the periods of the natural vibrations is in

general small, we may say in general terms that there will be

forced vibrations of large amplitude if amongst the harmonic

components of the obligatory vibrations there exist any with

periods equal to those of natural vibrations.
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Lastly, we see from (8) that though the periods of the forced

vibrations at all parts of the system are the same as those of

the obligatory vibrations which give rise to them, the phases are

in general different.

The process to be used in the case of periodic forces is

nearly identical with that which has been just explained, but

somewhat simpler, and the results are exactly of the same kind.

It is therefore omitted.



CHAPTER VII.

ON THE TRANSVERSE VIBRATIONS OF AN ELASTIC

STRING. {Dynamical Theory^

120. The rigorous differential equations which define the

motion of an elastic string under given conditions, can in

general be formed without diflSculty, but cannot be integrated.

It is only when the circumstances of the problem are such that

certain quantities involved in the equations may be neglected

without sensible error, that an integrable approximate form is

obtained. For our present purpose it will not be necessary to

form the rigorous equations; we shall introduce ah initio the

conditions of the actual problem, and neglect the small quan-

tities mentioned above, so as to obtain the approximate equa-

tions directly.

Let us then consider an elastic string, of which the ends are

fixed at two points A, B, zX z, distance / from one another,

greater than the fiatural length of the string.

In the condition of equilibrium the form of the string will be

a straight line of length /, and it will have a tension, T, con-

stant throughout its length, depending on the amount of the

extension to which it has been subjected.

If now the string be slightly disturbed and then left to itself,

its motion will be such that no particle will ever be much

displaced from its position of equilibrium, and we make the

following assumptions :

—

(i) The original disturbance is such that the vibrations are

sensibly transversal ; that is, the projection of any

particle on the line AB may be regarded as a fixed

point.
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(2) The inclination of every part of the string to the line

AB is always an angle so small that the square of

its sine or tangent may be neglected.

(3) The extension of any portion of the string due to its

change of form may be neglected; or the ratio of

the actual length to the length in equilibrio differs

insensibly from unity. (This is evidently a con-

sequence of (2).)

(4) The tension is sensibly constant, and may therefore be

taken as always equal to T. (This is a consequence

of (3)-)

. 121. Now let the position of any element of the string be

fefeiTed to rectangular axes having their origin at A, and the

axis of X coinciding with A B.

It follows from (i) that, for a given element, x is to be

regarded as constant, and from (2) that dx = ds. Consider now
an element of which the length is ds, or dx, and let x,y, Z

be the coordinates of that end of it which is nearest to A, and

x-\-dx, _y+dy, z + dz of the other end.

If no external forces are taken account of, the element is only

acted on by the tensions at its extremities ; and the components

of these, in the directions of the coordinate axes, are

-T^, -7^. -r^ at the end next ^,
ds ds

'

ds

at the other end; so that the whole components are

^(4f). ^(4)' A^l)-
But since T is constant and ds = dx, these become

Hence if dm be the mass of the element, we have
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Let p be the longitudinal density of the string, or the mass of a

unit of length in its actual state of extension. (The string

being supposed uniform, p will be constant.) Then

dm = pds = p dx,

T
and if we put — = a^, and take dx constant, we obtain from

P

(i) the equations

df ~ dx"' df ~ dx^'~ ^
'

The integrals of these equations will determine y and z as

functions of the two independent variables x and /; that is,

they will give the position, at the time /, of any proposed particle.

(The value of x defines the particle, and the values of j>, z

determine its displacement from the position of equilibrium.)

122. Since the first of equations (2) does not contain ?, and

the second does not contain y, it follows that the motion of the

projection of the string on the plane of xy is independent of

that of its projection on the plane oiyz; so that it will be

sufiicient to discuss one of these equations ; and we will suppose

for simplicity that the motion corresponding to the other does

80t exist. This is evidently equivalent to supposing that the

displacements and velocities of the particles produced by the

original disturbance were all in one plane, which we will take

to be that of xy.

We have therith^ single equation

^ = a^^ (3)
d/' " dx'

'

^^'

of which the general solution is

y = /{x~at)+F{x^^af). (4)

This equation represents the transmission of two arbitrary

forms along an unlimited line, with the same velocity a, (cor-

responding to the V of Art. 06), in contrary directions; and we

have already shewn (Arts. 88, &c.) what must be the general

character of these forms in order that the resultant curve may

have nodes, so that a portion of the infinite string contained

between any two nodes may be considered as a finite string
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fixed at its two ends. The mode of obtaining the same con-

clusions from equation (4) in a more analytical manner may be

seen in treatises on mechanics. (See, for example, Poisson,

Traits de Me'caniqw, t. ii. chap. viii. Price, Inf. Cal. vol. iv.

§ 281.)

It was also shewn how the most general solution of (3) in

which the functions/ and F satisfy the conditions imposed by

the problem, may be expressed in the form

y = 2i=i sm
-J-

[Ai cos —— + Bi sm -^;—) , (5)

where ar-il,
T

123. The value of a^ is — ; let W be the weight of the string,

P

then W=gpl, and a^ = -^ , and r, the time of a vibration, is

'Wi

Tg-

thickness, W ool, and therefore t varies directly as the length

and inversely as the square root of the tension. If the material

only be given, W is proportional to the length and to the square

of the thickness, so that t varies as the length and the thickness

directly, and the square root of the tension inversely.

If c be the length of string of which the weight would equal

2/
the tension T, then T=gpc, and therefore t = • Hence if

Vgc

g be expressed in the usual manner, the number of vibrations in

a second is —: vgc.
2/

124. The form (s) may be arrived at directly as follows

:

The form of equation (3) suggests at once as a particular

solution

y = sinmx{A cos amt-\-B sin ami)

+ cosmx {Ccosamf-\-Dsmamf),

in which, as long as no particular conditions are specified, all

the constants m,A,B, C, D are arbitrary. But in order that

this solution may represent the motion of the finite string, we
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must have, for all values oi t, y - o when x = o, and also when

X = 1. The first of these two conditions gives C = o, Z) = o

;

and the second gives

sinOT/= o

whence ml=iTr, i being any positive or negative integer. Thus

we obtain

. tTTX f . iirai „ . iTsaL
y = sm —y- \A cos ——

h

B sm —y—

j

as a particular solution ; and since the sum of any nurnber of

particular solutions is a solution of a linear differential equation,

we obtain (putting lar^l) the form (5) as a more general

solution.

The coefficients A^, B^2lXt all arbitrary unless the initial

circumstances of the motion are given ; but it has been shewn

already (Art. 98) that they can be so determined as to give the

dy
required initial values toy aud — for every part of the string.

The form {5) therefore is the most general solution of the dif-

ferential equation applicable to this simple case of the lateral

vibration of a string. (Longitudinal vibrations will be considered

in connection with those of a rod.)

125. The problem becomes little more complicated if we
introduce the supposition of a retarding force acting at every

point of the string, and proportional to the velocity \ The first

of equations (
i ) then becomes

dm.%^Tdd^ycdx.'^,
di^ ^ax^ dt

c being a constant. And instead of the first of (2) we shall

have d^ dy^ ^ d^
dt^^"^" dt'" dx-"'

^^

where 2 ^ is put for — •

P

Multiplying (2') by c**, and using the theorem

' See Art. 110, notf.
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1

we obtain

Assuming as a solution of this equation

6*'j/ = sin (mx+ a) sin (//+^),

we find the condition

or / = {a^ m^— k^)^ ; hence

y = e-T't sin {mx-\-a) sin ((a^ m^ - k'^)^ /+ /3) = o

is a solution.

The ends of the string being fixed, we must have (for all

values of /)_)/ = o when x = o, and when x = 1; and therefore

sin a = o, sin {ml-\-a) = o.

It is easily seen that we lose no generality by taking a = o ; then

ml=iiT, ox m= — . Fmally, therefore, the most general so-

lution of (2') appropriate to the problem is

in which Ai, |3^ are arbitrary constants, to be determined as

usual by initial circumstances.

From the above expression we see that the amplitude of the

vibrations will progressively diminish, and ultimately become,

insensible, through the diminution of the factor <:"'*'.

Also that the period of vibration of the ?*!» tone is increased

/ PP si
by the resistance in the ratio of i to (^i — -5-vi) '

If the value of k were so great that, for any values of i,

k > —J- , the value of _y would contain non-periodic terms.

But we shall not discuss this case, as it does not concern us

practically.

128. We proceed now to some problems of a less simple

kind, but of more or less practical interest.
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Problem i. To find the motion of the string when a given point

of it is subject to a given obligatory transverse vibration.

We suppose, in the first instance, that there is no resistance.

Let b be the distance of the given point from the end A of

the string ; and suppose that at this point the value ofj/ is to be
k sin nt. (We have no occasion to consider the external forces

necessary to maintain this obligatory motion ; we suppose them
to be applied, whatever they may be.)

It is evident that the portions of string on the two sides of
the given point may move independently of one another, except

that the value ofj' must be the same for both when x = b.

Let us assume then that from x-= oXo x = b,

y = ^yumx (A cos mat+Bsmmat).
This satisfies the differential equation, and also the condition

that y = o when x = o.

We have next to satisfy the condition that when x = b,

y = ksmnt. This gives

sin mb {A cos mci,t-\-B sin mat) = k sin nt,

which can only be true for all values of t on the supposition

that A = o, ma = n\ hence

. nt)
Sm—

a

and the value oiy becomes (for this part of the string)

k . nx .

y = 7 • sm— . sm nt. (6)
. nh a
sm—

a

Tiiis however is only a particular solution, since it contains no

arbitrary constant. But it is evident that we may still satisfy

the differential equation, without violating the prescribed con-

dition, if we ad4 the terms which would give the natural vibration

of this part of the string, if the given point were fixed. Thus
we get

k . nx .

y =
5 sm— sm nt

. nb a
sm—

a

, .^i=x . i'^x ^ aint . aint^ , ,

+ 2^=1 ^^^~ V^i ^°^ —^+ BiSm ~j-), (6)

and the series of arbitrary constants A^, B^, will enable us to

satisfy the initial conditions relative to this part of the string,
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so that the above equation gives the general solution of the

problem.

The motion of the other part may be found exactly in the

same way, and will be given merely by writing l—x and l—b
instead of x and b in (6').

127. Attending for the present only to the first portion of

the string, we see that the value oiy in (6') consists of two
parts, the first of which depends only on the imposed obligatory

motion, and ' determines the forced vibration of that portion.

The other part is independent of the obligatory motion, and
represents the natural vibration.

In any actual case the natural vibration is soon extinguished,

because the string is constantly giving up some of its mo-
mentum to the air and to the bodies which support the tension

of its ends. But the forced vibration will continue as long as

the obhgatory motion is sustained.

If we call T the period of this forced vibration, so that

T =— , and neglect the natural vibration, the equation (6) may
71

be written ^ . 2^ . 2,7/

ar
sm

ar

in which it is to be remembered that k is the amplitude of the

vibration imposed upon a point at the distance d from one end,

so that 5 is the length of the portion of string now considered.

For any given point at a distance x from the fixed end" the

amplitude of the forced vibration is therefore

. 2n-j?
sm-

ar . 27ri5
sm

ar

which expression becomes 00 (except for x^o) if sm = o.

This cannot of course actually happen ; in fact, the whole of

the preceding reasoning fails if the excursions of any part of

the string become large. All that we can really infer therefore

is that when sin is o, or very small, the amplitude of the
ar

forced vibrations will be much greater than under other con-

ditions. Now sm = o gives = z n-, or 20 = tar.
ar ar

Suppose \ the length of a portion of the string which would
I
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have T for the period of its natural vibration ; then 2 X = at

(Art. 94), and therefore the above condition is equivalent to

^ = z'X ; that is,

The amplitude of the forced vibrations in this portion of the

string becomes large when its length is any multiple of that

which would vibrate naturally in the same period ; or, which is

the same thing, when the tone corresponding to the period of

the forced vibration belongs to the harmonic scale of tones

which would be given by the natural vibrations of this portion

if both ends were fixed,

128. The points of minimum disturbance will be those at

which sin vanishes ; that is, at which sm —- = o ; or, on

the supposition now made, sin —7— = o ; that is, at points which

divide the length h into i equal parts, so that there will be quasi

nodes at these points'. Similar conclusions may be deduced for

the other portion of the string ; and it is easily seen that if the

obligatory vibration be imposed at any one of the points of

division of the whole string into i equal parts, and if its period

be - th of the period of the natural vibrations of the whole
I

string, the forced vibrations will be large, and the tone will be

the z'* of the harmonic scale of the string.

Thus we learn that in order to produce strong forced vibra-

tions in a string, the obligatory vibration must be imposed at

what would be a node in the case of natural vibrations of the

same period; a conclusion which- may appear strange. It

might have been conjectured that a point of greatest motion

ought to have been chosen. The explanation is simple, 'and

may be left to the reader.

129. We have so far supposed, for simplicity, that the

obligatory motion was a simple harmonic vibration. But if it

were a compound vibration consisting of the superposition of

any number of harmonic vibrations of different periods, phases,

and amplitudes, it would be easily shewn that every one of these

components would produce a corresponding term (analogous to

(7)) in the expression for the forced vibrations of the string.

Thus, if the imposed vibration required that, when x = b,

(. Iirt „ . 27r/>,
A^ cos- h £i sin )

,

the forced vibration of the string, from x = o to x = b, would be

expressed by the equation
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:2

. 21!X
sm

. a
sm

—
- (A, COS H ^,- sm

)
7r£ \ Tj T^ J

2/
In this case, if r:= -^ . that is, if the period of every com-

la
'

ponent of the imposed vibration is some aliquot part of the

natural period of the whole string, then the above expression is

not altered by changing x and b into l—x and l—b; and
therefore it holds good for the whole string.

130. These results may be approximately verified by ex-

periment as follows : If a tuning-fork be struck, and the end of

its stalk be then placed on the string of a pianoforte, violin, or

violoncello, at any point, it may be considered approximately
as imposing an obligatory vibration on that point. And it will

be found that in general the only sound heard is the note of the

tuning-fork, very weak. If, however, the point of application

be such that the portion of string intercepted between it and
either end could vibrate naturally so as to give, either as a

fundamental tone or as a harmonic, one of the component
tones of the tuning-fork, then that portion of the string is

thrown into strong vibration, so as to give the corresponding

tone very distinctly.

The fundamental tone of a tuning-fork is by far the strongest

of its component tones. The higher components proper, are

very high tones with incommensurable periods, which are hardly

heard after a few seconds. But there is also a harmonic tone,

an octave above the fundamental tone, which is weak, but per-

sistent, and this, as well as the fundamental tone, may be pro-

duced from a string in the manner just described ^-

For instance, if a c" tuning-fork be placed on the second

string of a violin at the point where the finger would be placed

in playing c", that tone will be heard, and /" may, by attention,

be distinguished as sounding with it. But if the fork be placed

on the first string at the proper point for the finger in playing

/", that tone will be distinctly heard, while /' will be weak '.

^ This harmonic octave in the sound of the tuning-fork is a phEenomenon
of the second order, of the kind mentioned in Art. 112.

' The sound actually heard is caused by waves in the air originating not

directly from the vibrations of the string, but indirectly from those com-
municated from the string, through the bridge, to the sound-board. An
investigation of the effect of placing a tuning-fork on the string, in which

this circumstance is taken into account, is given by Helmholz {Beilage III).

The practical results agree with those of the simpler process in the text.

I 2
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These are particular cases of the general phaenomenon of

resonance, of which we shall have to speak hereafter.

131. The expression (6), or its equivalent (7), becomes in-

applicable, as was shewn in Art. 125, when the obligatory

vibration is imposed at such a point that its period is any aliquot

part of the natural period of vibration of the portion of string

considered.

This inconvenience may be avoided by introducing the hy-

pothesis of resistance, under the form already employed in

Art. 125. And as the result will be useful in a subsequent
problem, we shall give the process as briefly as possible. We
shall neglect altogether the natural vibrations, which are soon
extinguished, and with which we shall have no concern in the

application to be made hereafter.

Let / be the length of the whole string. "Then, putting c

instead of zk in the differential equation (2') of Art. 125, we

and we are to obtain a solution of this equation satisfying the

conditions

y=p sinni+^cosni when x = 5, andj' = o when x = o.

For this purpose we may assume

j' = u sin ni+v cos «/,

u and V being fuiictions of x to be determined.

Substituting this value of j/ in the differential equation, and
equating to o the coefficients of sin«/ and cos «/, we find the

two conditions

{a^ iy'+ n')u + cnv = 0,1 „\
{a^B' + n')v-cnu = oJ W

in which D stands for -p- •

dx
Eliminating v we obtain

{ia'n'+ nY+ c^n'}u = o;
and therefore

where a^, a^, a^, a^ are the four roots of the equation

that is, the four values of the expression
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To put this result in a convenient form, assume

C 1/'

— = tan ^, tan - = jS, then
n 2

I = r (cos -^ + V — I sin il^)

;

cost//'

whence, employing De Moivre's theorem, and observing that

cos \^ _ I

\/cos\(f a/i— /3^

we find for the values of the expression (a) those of

and the above value of a becomes (after putting A, B instead of

« = sin 5 (^eP« + ^€-P») + cos5 (CeP«+ i3E-P«),

m which, 6 =— ,
•

0^/1-0"

The differential equation for v is of the same form as that for

u. Hence the value of v will only differ from that of u in

having different constants A', B', C, D' instead of ^, ^, C, D.
But these eight constants cannot be all independent of one
another, since the solution of the simultaneous equations (I)

cannot contain more than four arbitrary constants. In fact, on
substituting the values of u and » in those equations, we obtain

the relations A' = C, B' =-D, C'=-A, D' = B.

Moreover, since y = o when x = 0, for all values of /, we must
have « = o and v = when 6 = 0; hence

C+D = o, and C"+Zy=o,
from which it follows that A = B. Finally, therefore,- changing

A and C into ^ A and 5 C, we may write the values of u and v

thus: y = {A(rsm6+Cbcose)smnt
->r(C<Tsm.6—Ah COS 6) cos nt; where

(T = } S = •

2 2

it remains to determine A and C so that the above expression

may become identical with

/ sin«/+^cosM/

nb
when X = b, that is, when 6 = —-. •
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Exact and Approximate Results.

Putting therefore for this particular value of 6, and tr„, 8,

for the corresponding values of <j, 8, we have the two equations

^ (Tj sin ^+ C 8(,
cos ^ =/,

C o-(| sin ^ -^ 8o cos ^ = q,

whence

/I (o-/ sin^ ^ + 8/ cos^ <^ = p(r^sin(f>— g 8„ cos 0,

C {a-^ s\n^ (j) + 8(,^ cos^ ([>) = ^ cr„ sin ^ + / 8„ cos <^ ;

and the values of A and C thus determined are to be introduced

in the above expression fox y.
The result may be conveniently expressed thus :

£fo-„sind) +/8„cos(i ^

put ^ °-. ^ ^J' ^ = tan*;
"^

/i(r„sin<^ — ^8jCOS9

then j/= \f ' ^ ^ -{(7 sin 5 sin («/+*)
(<r,2sin'''<^+ 8/cos2#

+ 8 cos fl cos («/+*)}. (II)

This gives the exact solution of the problem ; that is, it de-

terihines the motion of the string from x = o to x = 6. The
motion of the remaining part of the string will be given by
putting !—x for x, and 1—6 for 6, in (II). The radical in the

denominator must evidently be understood to have the same
sign as sin<^, in order that this value ofj' may agree with that

found, as in Art. 126, when resistance is neglected, or /3 = o.

The period of the obligatory vibration is — , and that of the

natural vibration of the part of the string from .»: = o to .^ = ^ is

— ; hence, if the former period be any aliquot part of the latter,

or - =— , the value of <i ( = —
:

^ becomes —

;

, so

that, /3 being supposed very small, and 8„ being of the same
order as /3, the denominator in the expression (II) becomes
very small ; but it cannot vanish for any value of 0, and there-

fore this expression always gives a finite value foxy.

The expression (II) is however too complicated for use in

the problem for the sake of which we have obtained it. (See

Art. 138.) We shall therefore neglect /3 in every part of that

expression except where it is essential to retain it. Now = o

gives o- = I, o-j = I, 8 = o, 8=0, tan * = - . But we must retain
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the terln h^ cos^ ^ in the denominator, in order that y may not

become infinite when sin <^ = o. We tlius obtain

. , psinnf+a cosni -tttny = smd
:

£ {i-i-i-)

(sin-<^ + Vcosl0)*

as an approximate expression, which sensibly coincides with

that obtained on the supposition of no resistance, for all but very

small values of (j>, but agrees with experiment in giving a large

but not infinite value for v when sin ^ = o, or ^ = . (It must
n

be remembered that, in (III), &= — and <b =—^ •

If the vibration imposed at the point where x = h were not of

the simple harmonic kind, then instead of the right-hand mem-
ber of (III) we should have a series of analogous terms, as in

Art. 129.

132. Problem 2. Tofind Ike motion of the string when a given

point of it is subject to a given finite periodiq pressure, in a direction

at right angles to AB, resistance being neglected.

Suppose that the pressure is applied at a distance b from the

end A, and that at the time / it is / sin nt,p being a given finite

constant force.

To solve this problem we must recur to the fundamental

equation (see (i). Art. 121)

dt^ ^dx'

of which the meaning is that the force on any element dm is

the difference of the transverse componefits of the tension at

its two ends.

Now in general the change of direction of the string is con-

tinuous, so that d ( -r- ) is infinitesimal. But if the element dm
^dx'

contain the point at which the finite pressure is applied, there

wiU, or at any rate may, be a sudden change of direction at that

dv
point, so that the values of -p at two points on different sides

of it, however near, may differ by a finite quantity. Hence,
(dy-^

-7-) instead of

d(^\ ; and since it is acted on by the given pressure in ad-
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dition to the difference of component tensions, we must have,.

for that element,

and this equation must subsist, however small we'take dm;
hence in the limit it becomes

r.A(i^)+/sin«/=o, (8)

which is a condition that must be satisfied for the point at which

X = b.

At all other points the usual differential equation (3) must be

satisfied.

Now we may satisfy (3) with the conditions that_y = o for

X = and X = /, and at the same time allow the possibility of a

dy
"

finite change in the value of — when x passes through the

value b, by assuming "''^

y = €Ya.mx [A cos mat-^B sin maf) from x = 0X0 x = b,

y = %Ya.m {l—x) (^'cos mat -^B'sin mat) from x = bt.o x = l.

The condition that these values ofj/ must coincide when x = b,

gives Asmmb = A'5mm (/- b),

B %m. mb = B' sin m (l—b).

Moreover it is evident that it will be impossible to satisfy (8)

without taking ma = n.

Hence we may put

fl (I q\ fix '

v= sin—^^ sin— (Ccos«/+Z)sin«/),
a a ^

'

from X = o to X = b, and
flu fl (I— 3C\

v = sin — sin —^^ (C cos «/+ i? sin nt)
a a ^ '

from x = h\a x = l;

where C and D are constants to be determined by the condition

(8)- dvNow if we put ;t; = 3 in the values of -f- derived from the two
dx

expressions above given, and then subtract the first result from
the second, we obtain

/dy\ n nl
a(^—)= sm — (CcOS«/+Z)sin«/);
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so that, in order to satisfy (8), we must have C = o, and

2? = - . ———
•

; whence
'^ rsin^

a
. n (I— S)

, nx
sin—

^

'- sin—
a p a a

y - — ~ni' '— sin nl (j? = o to ;i; = b),
'" J-

. nl
sm—

. nh . nU-x) r(9)
sin— sin—

^

-

a p <^ a . . , ,,

_>' = -—• sm «/ {x = o \.o x = I).

sin—
a

These expressions determine the_/or«(/ vibration of the string;

and ' it is evident that we may add the terms representing the

natural vibration, viz.

2fci sin
-J- I

^ . cos
-J- +

B^ sin—^ |

.

(qO

(The above expressions for the forced vibration lead to a

result which at first sight appears paradoxical. Suppose, namely,

nh
that sin — = 0, which will happen if the period of the forced

vibration coincide with that of the natural vibration of the first

portion of the string, considered as fixed at both ends. Then
the value oiy in the other portion will be always o, or that

portion will remain at rest, if the constants A^, B^ be all o.

The explanation is jnerely that in this case the periodic

pressure is equal to that which the string would exert on a fixed

point at the same place, if the portion on one side of it were

vibrating naturally, and the other portion at rest.)

133. We have introduced this problem for the sake of the

use which may be made of it in finding approximately the

character of the vibrations excited in a pianoforte string by the

blow of the hammer. For this purpose we shall adopt the

hypothesis proposed by Helmholz, (the reason for which is

explained below, Art. 134,) namely, that the pressure of the

hammer on the string during contact may be represented by an
expression of the form / sinw/, but that it lasts only during

half a period, viz. from/=o to /= -. The breadth of the
.

n
hammer is neglected.

Now if, in the solution of the above problem, we suppose
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the constants A^, B^ to be so determined that at some one
instant when the pressure vanishes, say when /= o, the values

dy
oiy and of -7- shall vanish at all points of the string, then the

a/

subsequent motion will be the same as if the pressure had only

begun to exist, and to disturb the string, at that instant. If then

dy '

we find the values ofj/ and -j- at the end of the first half-period

of pressure, 'that is, when / = -, these will give the initial data
n

for calculating the natural vibrations which would follow if the

pressure then ceased to exist, as we suppose it to do in the case
of the pianoforte.

Now referring to the general expression (9) + (9') obtained
for y, we see that the conditiony = o when / = o gives ^^ = o

for all values of z ; and the condition -y = gives

a . _ . z'lrx
TT-'SiBiSm—

. n{l—b) . nx
sm sm—

= —^ ; {_x = o to x = b)

, sm —
a

. nh . n(l—x)
sm— sm

- {x = b to x = l);

. nl
sm —

a

whence, multiplying each side by sin —-— dx, and integrating

from X = o to X = I, yf& have

iTtT , nl ^ . nil—V)sm—^. = sm
2p a a

Jf*
. nx . tirX ,sm — sm—— dx

a I

^
. nb p ,

n{l-x) . tiTX
, , .+ sm— / sm—^ sm——dx. (10)

The value of the right-hand member of this equation will be
found to be

naP . nl . zV3
sm— sm -

n^P-d-i^'^'' a I

and therefore
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2p naP . itrb

Now if, in the general expression (9) + (9') for jy, we put

Ai = o, we find, for the instant when nt = tr,

V = S jCfj sin —;- sm—- ,

dv an . _ . inx iir^a ,

at I I nl

where the value of_/ is

. n(l—b) . nx
sin sin—

af a a. c ^ ,—-^ from X = o to X = 0,T
. nl

sin—
a

. nl . n(l—x)
sm— sin —^^ ^

and — -^ from x = 5 to x - I;

T
, nl

sin —
a

and these are the initial values of y and -f- with which we are
dt

to calculate the subsequent natural vibrations.

If then we begin to reckon / afresh from this instant, and
assume

J/ = 2 sm — (Q cos -^+A sin -j—); (12)

and compare the above initial values with those derived from
this expression, we find

C, = B, sin
nl

'^"^ •T^ • '^'''X air .„ t'n^a . inX
—-^tJJiSin -Y- = --2iB,cos—— sin—;- +/;
/ I I nl I

fnX
and multiplying the last equation by sin —— dx, and integrating

from x = oto x = l, (observing that (10) gives
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and therefore the value (12) oiy becomes, after a slight re-

duction,

. i^-,J=a> _ iiP'a . t'lrx . lira ,, ,
t,. , .

^ = 22,.i ^iCOS^^sm— sin— (/+-); (13)

which equation determines the motion of the string after the

pressure has ceased to act.

The amplitude * of the component vibration which gives the

z'th harmonic tone is therefore 2^^ cos =-; or, B: being

replaced by its actual value (11), the amplitude is

4/ nap . iirb iir^a

(This expression will be seen to agree with the result obtained
in a different manner by Helmholz, {Beilage IV. equation

(1212),) if it be observed that/, T, i, n in (14) correspond to

Helmholz's A, S, n, m; and 'that Helmholz's A^ is the am-
plitude only of the negative wave, and is therefore half the

amplitude of the complete vibration.)

134. In order to understand the results deducible from the

expression (14) we must recur to the hypothesis made above
concerning the law of pressure during the contact of the

hammer with the string. That hypothesis is founded on the

assumption that the impact may be assimilated to that of an
elastic body upon a hard fixed obstacle. On thi's supposition

let X be the length of the hammer, fi its mass, ft k'^ its moment
of inertia about the axis on which it turns, 6 the angle through
which it has turned from rest at the time /, 6^ and ^'^ the values

d6
of 6 and — at the instant when contact begins, and at which

we will suppose /=o; then' the pressure will be \g{d—e^)
during contact, g being a constant depending on the elasticity

* The meaning of 'amplitude' has been before defined (Art. 48) with
reference to the harmonic vibration of a poinl. In the case of the harmonic
vibration of a string, expressed by the equation

. iirx . Altai ,,,

or by the equivalent form

y = sm -p (Ccos —— + Bsm —7-);

the amplitude may be defined as the maximum displacement from the
position of equilibrium. This maximum displacement is evidently equal to

i, or to (C^ + Z)^)*, and occurs at points which bisect the nodal intervals.

>:iM.iMl
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of the material of which the head of the hammer is made ; and
we shall have, during contact,

dH
_ _ xy {6- 6„) _

and if this be integrated in the usual way, and the constants

determined by the conditions 6 = 6^, -— = 6\ when t=o, the

result is q '

6—e„=-^ sin«/

where « = t x/ >

and the pressure during contact is therefore

B^^k'Jiiq .smnt,

and the duration of contact is

7T k /H

n \ ^ q

Hence the value of/ in (14) is ^^k^/ixq, which depends on
the velocity of the hammer at the beginning of impact, as well

as on its weight, material and form. But the value of n, which
determines the duration of contact, depends only on the latter

circumstances, and not on the velocity.

135. Referring now to the expression (14) we see that it

vanishes if sin —j— = o ; that is, if ib =ml, m being any integer.

This shews that if the blow of the hammer be applied at any
one of the points which divide the string into i equal parts, all

the harmonic component tones which would have nodes at

those points are extinguished. (We found a similar result on
the supposition that the sound was excited by plucking the

string at a given point.' See Art. 119.)

In general the quality of the note produced, which is determ-

ined by the comparative strength of its different component
tones, is independent of the momentum of the blow, (which

only affects the value of the coefficient p,) but depends upon

the two ratios — and — , that is, upon the place at which the

blow is struck, and upon the ratio of the duration of contact to

the period of the fundamental tone of the string (viz.—-\ If
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we put V for this latter ratio, the expression (14) may be written

in the form

The value of v depends, caeteris paribus, on the coefficient of

elasticity q, and becomes very small if ^ be very great, that is, if

the hammer is of a liard unyielding material. But the product

pv IS, seen, on reference to the values of / and v, to be in-

dependent of q, so that the above expression for the amplitude

becomes A . inb , ,-.^^-^-^^sm— cos (...);

where A depends upon the weight, form, and velocity of the

hammer, but not upon its elasticity. If we suppose the hammer

absolutely hard, or v = o, then the expression becomes — sin—-

.

t i

A table of results calculated on different suppositions as to

the place of the blow and the value of v may be seen in Helm-
holz, p. 135-

It appears that in general the effect of diminishing v is to

increase the strength of some of the higher harmonies as com-
pared with that of the fundamental tone.

In numerical applications it must be remembered that the

intensity of the tone is supposed to be proportional (for each

harmonic component) to the square of the amplitude multiplied

by i^. See Problem 3.

136. Peoblem 3. To find the energy of a string vibrating

naturally.

First, suppose the vibrations are in one plane, and such that

the note produced is simply the z* harmonic component. Then
the form of the string at any time may be represented by the

equation i„x i^at v , >

J/ = ^ sm
-J-

sm
(^

+°j- (15)

The total energy at any time consists, as we know from general

principles, of two parts, kinetic and potential, of which the sum
is constant. The kinetic energy is that due to the motion of

the string, and is measured by half the vis-viva. The potential

energy is that due to the deviation of the string from the form
of equilibrium, and is entirely converted into kinetic energy

whenever the string is passing through the position of equi-

librium, that is, whenever

. /it! at \
sm(^

—

-—
^ + aj = 0.
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Hence the total energy at any time is equal to the kinetic
energy at any one of those particular instants.

Now (15) gives, when sin(—^ l-a) = o,

dy ."« . . iiTX--=±.-Jsm—

;

so that, if p be the mass of a unit of length, the kinetic energy
at that instant is

which is the required value of the total energy at any time. We
may transform this expression as follows : let M be the mass of
the whole string, and t^ the period of the vibration. Then

, ,

,

,
2

/

ta 2
(tl=Al, and aT^= —r , or —- =—

;
t I rj

hence the above expression becomes

n'M~; (16)

from which we learn that in this case the energy is proportional
to the product of the mass of the whole string, the square of the
amplitude, and the square of the number of vibrations in a unit of
tiTne.

Next, suppose the vibrations still in one plane, but of the

most general kind ; then, at any time,

. z'ttx r , irrat _ . inai\
J/ = S sm

—J-
(Ai cos —^ +Bi sm ~j~}

'

In this case the string, in general, never passes through the

form of equilibrium, and the potential energy is therefore never

entirely converted into kinetic.

Let us consider the string at the instant when / = o : at that

instant
_ ^Vx , -

j/ = 2j.sm—

,

(17)

and the total energy is jr A- P
where K is the kinetic energy due to the motion expressed by

(18), and P is the potential energy due to the form expressed

by (17).
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The value ofK is easily found, for

and if we suppose the square of the series within brackets to be
developed, we see at once that all the terms will be destroyed

by the integration except those comprised in the series

s(.-^5/(sini^));

and these give, on integration, ^ / s z^ B^. Hence we have

K=\pl{^)\i^B?. (19)

To find the value of P, we may proceed as follows :

Suppose the string to be put in the form (i 7), and then left to

itself without any initial velocity. After the lapse of any time /,

its total energy will still be equal to P, but will have been partly

converted into kinetic, so that

P-K^ + Pr,

where K^ is the kinetic energ)' at the instant in question, and
Pj is the potential energy due to the form at the same mstant.

Suppose then the string to be brought to rest in that form, and
again left to itself for a time f ; we should have in like manner

Pi = K^+ P^,

and so on successively ; thus

P = K^+ K^^-K^+... adinfin.,

where K^, K^, ... are the kinetic energies which the string

would have after successive intervals of time equal to /, if,

beginning with the form (17), it were left to .itself for a time /,

then brought to rest in its actual form, and left to itself again,

and so on successively.

Now the string, left to itself at a given instant in the form

(17), will vibrate (see Art. 97) so that at any time (reckoned

from that instant)

. , inx iw a t

;/ = 2 ^i sm— cos—^ ;

and at the end of any time /', if we put —— = 6, we shall have

y = 'SAiC0si6.sm—j-; (20)
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dy na ..... , itrX , ,^=—-Sz^^sinz^.sin—

;

(21)

and ^1 is the kinetic energy obtained from (21) in the same
way as K was from (18) ; hence

^l = i/'^(^)'2^M/(sin^•5)^

To find K^ we have to proceed in the same way, nierely assum-

ing (30) instead of (17) as the initial form; thus

K.2-4\pl (^) S e Af (cos i6)^ (sin i6f

;

and so on successively, the value of ^„+i being always deduced

from that of K^ by changing ^^ into ^^ cos i6. Therefore

= \pl(^-j) S e Al (sin ifff(\ + (cos i6f + (cosV^)*. .. ad inf.)

and, the series within brackets being equivalent to

I I

I- (cos /^)^" (sin 2-^)2'

we have finally

"

_. 2

P = lpl(^-f)^i^Ai.

Adding the value of P thus found to that of^ (19), we obtain

the required expression for the total energy (E) of the string,

VIZ.

E=\pl{^)^z^A?^Bl)

/( 2 I n2

' The representation of P by an infinite series corresponds to the physical

fact that it would require an infinite number of operations of the Icind

described in the text to bring the string into the condition of equilibrium.

It may be observed' that, if the arbitrary be taken incommensurable with
ir, the series within brackets cannot become divergent, though for infinitely

large values of ; it may approach infinitely near to divergence ; but this will

be compensated by the factor (sinifl)' becoming infinitely small. If we
took / equal to half a period (or 6 = tt), it is evident that the operations

described would never bring the string to rest. In this case the factor

(sin i By would vanish, and the series within brackets become oc . But we
arrive at a true result by interpreting the product as representing i, for this

as for all other values of 9.
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where, as before, M\& the mass of the string, and T^ the period

of the ?'*h harmonic component vibration.

Now, observing that A^+Bl is the square of the amplitude

of the component vibration, and comparing this result with

(i6), we see that the total energy E is the sum of the energies

due to the several harmonic components.

Lastly, we will take the most general case, in which the

vibration is not in one plane. The displacement of any point

in the string at a distance x from one end is then compounded
of two displacements y and z in planes at right angles to one
another, and the whole vibration is compounded of two repre-

sented by equations

. iirX / , in at _ . tirat^
y = 2 sm —J- \^i COS

—J— +Bi
sin —7—)

'

. iizX f ., iirat - _, ., i'nai\
z = -s,%\n.—j-\A jcos——VB ^ sm——-j

;

the square of the velocity at any point of which the abscissa is

X, is now, when / = o,

(y) {(^ ' ^i ^"^ -r) + (^
'
^' '''' ~r) ^

'

and the process is the same as before, with obvious modifi-

cations which may be left to the reader.

The result is

^^^^,,4^f^^M7±^.

and, as before, the total energy is the sum of the energies due

to the several harmonic component vibrations in both planes.

It will be observed that the numerator in the above expression

is for each harmonic vibration the sum of the squares of the

amplitudes of its components in the two planes ; and this sum
may, by an extension of meaning, be called the square of the

amplitude of the actual vibration, which, for a given point, is in

general elliptic.

137. The value of E found in the last article, is the equi-

valent of the work which would have to be done, if the string

were at rest, in order to put it into its actual form and state of

motion. And it appears natural to take this as the measure of

the strength or intensity of the note produced. But the pro-

priety of this definition cannot be absolutely demonstrated by
experiment, because, although the ear can judge with great

accuracy which of two notes is the louder, when both have the
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same quality and the same pitch, it cannot form a precise judg-
ment as to the ratio of intensity. On the other hand, when two
notes have the same quality but differ moderately in pitch, the

ear can still decide with some certainty whether they are or are

not of equal intensity, and if not, which is the louder ; and it

might perhaps be possible to arrange an experiment in which
a series of notes should have the same quality and equal in-

tensities according to the theoretical measure, and the ear would
judge whether equality of loudness subsisted at the same time.

(The definition of quality will be discussed in another chapter.)

138. Problem 4. To examine the motion of a violin string

under the action of the bow.

This problem is much more difiScult than that of the piano-

forte string, because the force exercised by the bow upon the

string is determined by circumstances which seem to defy

calculation, and we can hardly make any plausible hypothesis^

a priori. We are obliged therefore to have recourse to ob-

servation, and endeavour to determine experimentally some
characteristics of the motion from which the analytical repre-

sentation of it may be deduced.

In the first place then it may be easily verified by any one
with a practised ear, that when the bow is drawn across the

string at any point of aliquot division, no component tone

which would (if existing alone) have a node at that point, is

heard in the note produced. (In order however to extinguish

these tones, it is necessary that the coincidence of the point of

application of the bow with the node should be exact. A very

small deviation reproduces the missing tones with considerable

strength.) The other facts to which we shall have to refer are

ascertained not by the ear but by the eye. The character of

the vibration of any point of the string may be observed by
means of the ' vibration-microscope', the principle of which

was explained in Art. 65, and in this way Helmholz has

arrived at results of which the following are the most im-

portant :

(a.) When the bow is applied at a point of which the distance

from the bridge is an aliquot part of the string, and the point

observed is one of the other nodes of the same division, the

curve obtained by the imaginary unroUing of the cylinder

(Art. 65) reduces itself to a zigzag line, so that a complete

vibration is represented thug

—

K 3
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Fig. X.

A B represents the period (t) of the vibration, and the ordinate

PM oi any point P in the line D Misrepresents the displace-

ment of the observed point at the time t { = A M) reckoned

from the instant of greatest negative displacement. It appears

to be implied that AB^CE, or that the excursions on op-

posite sides of the position of equilibrium are equal.

It follows evidently that the velocity of the observed point is

constant throughout each of the two parts (the ' swing' and the
' swang') of the vibration, but is not in general the same in

each. When, however, the observed point is at the middle of

the string, it is found that AC = CB, and the velocities are

therefore equal.

(I.) If at any point we call the ' swing' that part of the

vibration which is performed while the point is moving in

accordance with the bow, then the velocity of the swing is less

than that of the swang, if the observed point is in the same half

of the string as the point of application of the bow, and greater

in the contrary case. Thus, in Fig. i, iJM would represent the

swing and EF 'Cos swang at a node in the contrary half to that

in which the bow is applied. It appears probable that at the

point of application the string is dragged by the bow with its

own velocity during the swing.

(c.) When the observed point is not one of the nodes, the

vibration is still represented approximately but not exactly by
Fig. I. In this case the lines DE, EF, instead of being per-

fectly straight, consist of a series of ripples or wavelets, though
maintaining their average directions.

When the bow is applied at a point which is not a node, the

character of the vibrations has not been satisfactorily made out.

(Helmholz, p. 139, &c.) (The reader will observe that we are

here using the word node to signify not an actual node, but a
point which would be a node if the corresponding component
vibration existed alone.)
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These results have been confirmed by Professor Clifton, who
observed the vibration-curves of points on the string by means
of revolving mirrors. (On the principle of this method of ob-

servation, see Note at the end of this chapter).

139. Assuming the facts above stated, let us suppose that

the length of the string is /, and that the bow is applied at a

point which we will call Q, at a distance b from the bridge.

Now, whatever be the character of the actual vibration of Q,
we know that it can be expressed by means of Fourier's theorem

in the form 2,^/ „ . 22^^ , ,S^^Qcos VD^%va. ); (22)

where r is the period of the vibration, which must be that of

the natural vibration of the string, since we assume that the

fundamental note is produced : hence t = —

.

Moreover it is evident that if the actual vibration of Q were
known, we might suppose it to become oUtgatory, and the

motion of the rest of the string would remain unaltered.

We shall therefore in the first place assume that the series of

coefficients C^, D^ are known, and that (22) is the obligatory

value ofJ/ at Q.

Then (see equation (III), Art. 131, and the remark at the

end of that article) the vibration at any point of the string from

X = o to X = b will be approximately represented by the

equation

_ ^i=m sin 6^

^'^^-^
(sin^<^, + ./cos^ <#.,)*

^

iCs cos 2 zV - + Ds sin 2 zV ~\; (23)

where, in the present case,

ziiTX iirx inb

r a I I

and e/ is a small quantity depending on the resistance. And
since this formula is not altered by changing x into l—x and

b into l—b, it will hold good for the whole length of the string.

140. The facts above stated ((a) (3) (c)) have been ascer-

tained only in the case in which the point Q, at which the bow
is applied, is a node.

We must therefore assume this ; and in order to determine

Ci, -Di, we shall further assume that the vibration of Q, re-

presented by (22), is of the same kind as that observed at other
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nodes; so that (22) must give the value of the ordinate at any

point /* in a line such as DEF (Fig. i), if the abscissa AM
be taken proportional to t.

We shall have then AB = t; let ^C = 7-„, and CE=^, so

that is the amplitude of the vibration at Q, t^ is the duration

of the ' swing,' and t—t^ of the ' swang,' at the same point.

Now the problem of representing a locus such as.DEEhy
means of a periodic series with period r, has been already

solved in Art. 76. In order to make use of equation (3) of

that Article, it is evidently only necessary to omit the constant

term, and change
^^ ^^ ^^ ^

into 2^, T, T„, /.

We thus obtain for the ordinate the value

-2

—

r 2 -^ sm —5 sm (/ -)

;

(24)

and the values of C,-, D^ are to be so taken that the expression

(22) shall be identical with this. It is unnecessary to write

down these values, as it is easily seen that when they are in-

troduced in (23) that equation will become

„ 2 sm z 77 — sm5,-

141. In this equation it is to be remembered that 0f, <t>i
are

abbreviations for —— , —y- . In order however that it may

determine completely the value ofj^ at every point of the string,

it is necessary that the value of the ratio — should be known.
r

Now it has been already stated as a fact of experiment (Art.

138) that every component tone is extinguished which would
have a node at the point of application of the bow ; that is,

every component of which the period is an aliquot part of

the period of vibration of a string of length b. Hence the value

2 3 T
of _y (25) ought to vanish when — is a multiple of - ; now

a t

b = ~ , and t = — , so that y ought to vanish when . ' is a
in 1 a in a

multiple of -r-, or when tp^ is a multiple of jt. Therefore

sin ITT -^ ought to Vanish when sin ^^ vanishes, and the simplest
T

hypothesis we can make is that
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Sin = ± sin 9i = ± sm —p- •

This may be satisfied either by

h T, l-h

V ""' f =— =

but if / (in Fig. i) is reckoned from an instant at which Q
begins to" follow the bow, so that the positive direction oiy
is that of the motion of the bow, the latter supposition must be
adopted, because t„ ought to be greater than r— t„. Then we
shall have

sm

. ITT 6
sm —J—

-COS?Jr,

J . . . tTTX . ln(l—x)
and since — cos 2 n- . sin —j- = sm ,

if we now agree to measure x from the other end of the string,

which is equivalent to changing l—x into x, (25) will be
reduced to the form

J' = -i—

7

t2- t
—^ -^ —r sin (/—-). (26)

T 1 • 1 r sin (bj
, ,

In this equation the factor —— j is very nearly
(sin'(/)i+ e/cos='(^i)^

equal to i, for all values of z' except those which make sin ^; = o

or very small. If we substitute i for this factor, we obtain the

approximate equation

y = -s—j ^v 2i=i -^ sin -— sin (/- -^) ; (27)

and, comparing this with (24), we see that for any particular

value of X, that is, for any particular point of the string, it gives

a vibration-curve of the same kind. For if we take a quantity

/ X
r such that - = -1 , (27) may be put in the form

y= -5

—

-, ;2,-i ^ sm sin

—

it ^ •"), (28)

in which the part under the sign of summation can be reduced

to the same form as in (24) by changing the arbitrary instant

from which / is reckoned. Hence it represents a zigzag like
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Fig. I, but with a different amplitude; and the phase of the

vibration at any'given time varies with /, that is, with x.

Now T is the duration of a whole vibration, and / of the first

/ X
part of it, or ' swing ;' hence the equation — = -r expresses that

at any point the durations of the 'swing' and of the 'swang'
are proportional to the lengths of the two parts into which that

point divides the string; and Helmholz has ascertained, by
observing the ratio oi AC to CB in Fig. i, that this relation

actually subsists, so that the hypothesis assumed above is

justified.

The equation (27) agrees with the approximate formula which
Helmholz has obtained in a somewhat different manner. It

fails to represent two of the observed facts, namely, (i) the

extinction of those component tones which have nodes at Q,
and (2) the existence of ripples in the vibration-curve when the

observed point is not a node.

The more accurate formula (26) represents these facts ex-

actly, if we consider the factor to be = i (as^
(sin>, + e/cosVi)*

^

it is very nearly) except when sin (/)j = o, in which last case it

is = o. For we have already seen that Ae vanishing of this

factor causes the extinction of the component tones in question

;

and the Vibration-curve (27) will be modified by the disappear-

ance of the corresponding component curves ; and the effect of

their disappearance will evidently be to change the zigzag of

straight lines represented by (27) into a zigzag of rippled

lines *.

If we put j3' for the amplitude of the vibration at any par-

ticular point, then, neglecting f^, we have

whence /3' =

't„(t— To) ir'T'(T— /)
/3/(r-/) ^X{l-x) T^

^0 ('—To) '0 ('"— To) l^

let P be the amplitude at the middle point of the string, then

P = \ , and therefore
ToCt-To) „

^=^x{l-x\

' Helmholz's Fig. 25 (p. 144) represents the vibration-curve of a point

so near the end of the string, that one side of the zigzag is too steep to

have ripples. But Professor Clifton has found that they are seen on both
sides when the observed point is nearer to the middle of the string.
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which gives the ratio of the amplitude at any point to that

at the middle point.

Introducing the above value of P in (26), we obtain

8P«y I . iTtX . 2Z7r/, r. \

(29)

which agrees with Helmholz's equation (3^) {Beilage V).

This equation (or (26)), considered as an equation between

X and_>', determines approximately the form of the whole string

T T
at any time. When /—^ is o, or any multiple of - ,y vanishes

for all values of x, so that the whole string is straight at these

instants.

142. At all other times the two portions of the string between
its extremities and the point of greatest displacement, are

straight. This is easily shewn as follows. It was proved in

Art. 98 that the equation to a locus consisting of two straight

portions AC, CB (Fig. 2)

Fig. 2.

is (from x = o\.o x = l),

'%'x^{l-Xa) i
2 ^r sin

ITt x^
sm
m X

(30)

where AB = l and x^, y^ are the coordinates of C (Fig. 2),

reckoned (like x and.y) from ^. And it is evident that this

equation may be made identical with (29) at any determinate

time /, by taking .r^ and^j so that

^yJ' 8P
_2^ (1^ ^\" * ^ ',i^x^[l-x^

sm-
mx^

± sm
2 iTT

(^-^);

the same sign being taken in both.

The iirst of these equations shews that the locus of the vertex

C of the string consists of two parabolic arcs passing through
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its extremities A, B, and on opposite sides of AB, belonging
to the parabolas of which the equations are

^= ^^x{l- x).

The second determines the position of the veftex at the

time / ; and writing it in the form

Xf. , , t -H T,,

sm 2 TT - ± sin ? TT -

\t

we see that (beginning with the instant when t = \T^ it is

satisfied by supposing x^ to vary uniformly from o to / and
then from / to o and so on successively, the time occupied
by each of these successive changes being \ t, and the upper
and imder sign being taken alternately. (This will be most
clearly seen by examining the case of t = i.)

Fig- 3.

The string therefore vibrates in the following manner

:

It is always divided into two straight portions, as A C, CB, or

A C, CB ; and the vertex C describes the two parabolic arcs

alternately in such a manner that the foot of the ordinate, M,
moves backwards and forwards between A and B with a con-
stant velocity. (Helmholz, Beilage V.)

Hitherto we have supposed the bow to be applied in the

usual manner, so as to produce the fundamental note of the

string. But if the point of application be taken gradually

nearer to the bridge, while the bow is drawn with a somewhat
quicker motion and lighter pressure, the fundamental tone
becomes weaker ; and ultimately a node is established at the

middle of the string, the fundamental tone is extinguished, and
the note produced is the octave, or first harmonic.

These changes in the character of the note are accompanied
by a corresponding series of changes in the vibration-curve,

which passes from the original zigzag, through a series of

intermediate forms, into a similar zigzag of half the period and
smaller amplitude, (See Helmholz's Fig. 26, p. 145). Thi^
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phsenomenon has also been observed by Professor Clifton. But
it has not been submitted to mathematical analysis.

143. Problem 5. To examine the vibration of a string which is

loaded with a finite mass at a given point.

We shall assume that the weight of the mass is insignificant

compared with the tension of the string, so that the vibration is

modified only by its inertia ; and also that its dimensions are so

small that the consideration of its motion relatively to its own
centre of inertia may be neglected. In other words, we shall

consider it as a small but finite mass, concentrated at a point.

Let then ft be this mass, and suppose / is the length of the

string, and b the distance of the point at which /i is attached

from that end of the string from which x is reckoned.

dy
As in Problem 2, we must suppose that the value of — may

undergo a sudden change when x passes through the value b

;

and at that point the equation

must be satisfied. The rest of the string is subject to the usual

differential equation „ „

dt"" dx''

'

Now we may satisfy the latter equation, together with the

conditions that y = o when x = o and when x = I, and that

the value oiy must not change suddenly when x = b, exactly in

the same way as in Problem 2. We shall therefore assume

y = smm Q—b) sin mx (A cos amt+B sin ami), (32)

from X = o to X = b, and

y = sinmb sin m {i—x) {A cos amt+B sinamt), (33)

' from X = b to x = I.

Either of the above equations gives, for x = b,

^=—a^m'' sinmb sin m (l—b) {A cos amt+B sin ami)

;

dt^ ,

a-nd, taking the difference of values of ^ given by the two

equations when x = b,-we find, as in Problem 2,

^(Sf) = _OT sin ml. (A cos amt+B sin amt)

;

^dx

^'J'^-iB (3.)
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hence, in order to satisfy (31), we must have

\i.(^m sin mh sin m {l—b) = Tsin ml.

This last equation determines m, while A and B remain arbitrary

unless the initial circumstances of the motion are given.

T
The value of a^ is — (Art. 123), where p is the longitudinal

density of the string. If then we put ^ = pX, so that X is the

'length of string which would have the same mass as ^, the

above equation will become

w X sin OT 3 sin m {l—b) = sin m I. (34)

It will evidently have an infinite number of roots, and if we
denote them by m^, m^, . . . . the complete solution of the pro-

blem will be given by the equation

y = 2 -Zr ^i {A cos amil+ B.i sin a w^ /)

;

(35)

in which

y _ / sin OTj {l—b) sin m^x f.a? = o to j? = b),

* ~ \sm m^b sin m^ {l—x) {x = b to x = I),

and the coefficients A^, B^ are all arbitrary, unless determined

by initial conditions.

144. The complete vibration therefore consists, as in the case

,

of the unloaded string, of simple harmonic vibrations super-

posed.. But the values of m, which determine the periods of

these component vibrations, are not in general commensurable
numbers, so that the component tones do not belong to a

harmonic scale, and can only be improperly called ' harmonics.'

If in equation (34) we suppose X = o, or b = 0, or i5 = /, we
get the condition foran unloaded string, namely, sin ot / = o, as

in the original investigation of that case.

If, on the other hand, we suppose fi = 00 (which we are at

liberty to do if we also suppose gravity not to act), then X = c»,

and the second member of (34) is insignificant in comparison

with the first, and the condition for determining m becomes

gin mb sin w (/— 3) = o ;

so that either sin w ^ « 0, or sin m {l—b) = o.

Either of these equations gives y^o when x = b; that is, the

point at which /* is attached remains fixed, as it evidently

ought.

The periods of the component vibrations are now those

which belong to the separate portions of the string ; and equa-
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tion (35) shews that each can only exist in its own portion.

But it is evident that we may now, without violating any pre-

scribed condition, take sin w 5 = o in one portion and sin m
{l—b) = o in the other; thus the motion consists in general

of the natural vibrations of the two portions, existing inde-

pendently. The infinite attached mass is simply equivalent to

a fixed point.

145. In general the roots of the transcendental equation (34)
could only be found by troublesome approximations. Two
special cases however deserve attention.

The first is that in which the mass ju is attached at a node, so

that b = -^l, j,f being integers. (34) then becomes

/'_/
_

;•'

mX sinmd sin -—r^ m5 = sm—r m5:
/ J

and it is evident that this is satisfied by taking for m6 any

multiple ofy TT. Thus we shall get a series of roots (not all the

roots) by giving t integer values from i to co in

t'l'w z'/'tt

The period of the i^^ component tone given by this series is,

as we see from (35),
277 2 /

ami "^J
2 /

Now -—r, is the period of the vibration of the unloaded string,
aj

when it is vibrating so as to give the lowest harmonic tone

which has nodes at the points of division of the string into j'

equal parts.

We see therefore that when the mass is attached at a node,

all the component tones which have nodes at that point remain

unaltered. But the fundamental, and other component tones,

will be changed.

This may be verified by attaching a small lump of wax to

one of the points of aliquot division of a violin or pianoforte

string.
.

The other case is that in which the attached mass is so small

that the square of the ratio - may be neglected.

Since (34) is satisfied by ml=in when X = o, we may assume
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that when X is small it will be satisfied by ml=Z7r+ e, where e is

of the same order as j

Substituting therefore —j^- for ot in (34), we obtain

- (iTT + e) sin - (z'TT+ f) sin^i — -) (zV+ «) = sin (t'lr + e)

;

and, terms of the second order being neglected, this becomes

. X . . ^ . X. .6.
ZTT - sm ZTT - sm(z JT— ZTT 7) = E cos z JT

;

z z ^ z

'

whence we get
j^ 3— z'tt y sin^ z'tt y = e;
z z

so that we may take

zV+ e iTT / X . 3v
^,= -^ = -^(i--sm^.-).

The period of the corresponding tone is ^; or the number
am- '^^i

of vibrations in a unit of time is —-; hence the number of
2 77

vibrations is diminished by the load in the ratio of

I— y sm'^ZTTy to I,

and the fundamental tone, as well as the higher components,

are all lowered ; moreover the components belong nearly but

not exactly to a harmonic series, so that the compound note

will sound slightly discordant. The examination of particular

cases may be left to the reader.

NOTE.
On the Principles of the Use of Revolving Mirrors,

(See Art. 138.)

If a plane mirror revolve about a fixed axis AB vci its own plane, the

path of the image of any stationary point Q_is a circle which passes through

Qj and has its centre at the point where a perpendicular from Q^meets AB.
And this path is f

he same whether one side only, or each side, of the mirror

be a reflecting surface.

If the axis of rotation, AB, be not in, but parallel to, the plane of the

.mirror, tl\en the path of the image of Q_is a curve of the 4th degree, having
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a double point at Q_, and two loops, one -within and the other without the
circle described as above. The inner loop is the path of the image formed
by reflection at the outer surface (reckoning from A B) of the mirror, and
the outer loop of that formed by tlie inner surface.

A usual arrangement is to join four mirrors together so as to form four

sides of a cubical box, with tie axis of rotation passing through the centre

of the box, parallel to their planes, and equidistant from them all. The
outer surfaces of course alone reflect, and the images formed by them all

describe the same path.

But an eye placed at any determinate point will only see one image at

one time, and only while it describes a small portion of its path ; and if the

velocity of rotation be sufficiently great, this small portion of the path of the

image of a stationary and continuously illuminated point will appear to the

eye as a continuous and stationary line. If however the point, while con-

tinuously illuminated, have a vibratory motion of sufficiently short period,

parallel to the axis of rotation, and if the velocity of rotation of the mirrors

be so adjusted that one quarter of its period is equal to, or a multiple of,

the period of vibration, then the passage of each mirror through any given

position will always happen when the vibration is in the same phase ; and
consequently the visible portion of the path of the image will appear as one
or more waves of a continuous and stationary vibration curve, formed by
compounding the two motions along and perpendicular to the line before

mentioned.

On the other hand, if the point be stationary, but illuminated only at

-instants separated by sufficiently short intervals of time, it will appear, when
viewed by the eye directly, as a continuously illuminated point ; but when
seen by reflection from the revolving mirrors, it, will appear, not as a con-

tinuous line, but as a row of points, which will be stationary if one quarter

of the period of rotation of the mirrors be equal to, or a multiple of, the

interval of time between successive illuminations.

Some of the most usual applications of revolving mirrors depend upon
these principles. They appear to have been first used, for purposes of

observation, by Wheatstone.



CHAPTER VIII.

ON THE LONGITUDINAL VIBRATIONS OF AN

ELASTIC ROD.

146. The vibrations of a uniform elastic rod may be either

transversal or longitudinal, and both kinds may, when small,

coexist without sensibly modifying each other. We may there-

fore study them separately ; and we shall begin with the theory

of longitudinal vibrations, as being the simplest. We might,

as we did in the case of the string, first consider the subject

kinematically, assuming the law of wave-propagation in a rod of

infinite length; but we prefer to proceed at once to the dy-

namical theory.

147. We suppose then the motion of all the particles to be

in directions parallel to a fixed straight line in space, with which

the axis of the rod always coincides. By the axis of the rod is

rheant a line passing through the centres of inertia of its trans-

verse sections.

Further, we suppose that all the particles which at any one

instant are in a plane at right angles to the axis, continue to be

so at all times. In other words, the velocities of all the particles

in the same transverse section are equal.

The first of these suppositions cannot be rigorously true,

because we know that a longitudinal extension of any part

of the rod is in general accompanied by a lateral contraction,

and vice versd. But when the vibrations are small these lateral

displacements may be neglected without sensible error.
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148. We shall first investigate the- conditions of equilibrium,

and then deduce the equations of motion from them by the help

of D'Alembert's principle.

The usual law of elasticity is assumed, namely,

where ^ is a constant (the modulus of elasticity), and 7' is the

force, per unit of area, which must be applied, in contrary

directions, to any two transverse sections, in order to produce

an extension (or compression) t. If Tis a tendon, or pulling

force, the effect will of course be positive extension, or elonga-

tion ; and if 7" be a pushing force (or negative tension) the

effect will be negative extension, or contraction. The definition

of extension, which includes both cases, is

actual length

natural length

O A \B X

Fig. I.

Let AB (Fig. i) be the axis of the rod, coinciding with a line

OX fixed in space. And let us suppose that the rod is actually

in equilibro under the action of given forces, of which the

directions are all parallel to X. Let | be the actual abscissa

of any transverse section Pp reckoned from the fixed origin 0,

and X the natural (or unextended) distance of the same section

from the end A. (By the same section is meant the section con-

taining the same particles.) And let !„ be the value of ^ at ^.

We have then to consider the conditions of equilibrium when

the following external forces are applied :

(i) A force F^ per unit of surface applied to the end A,

and a force F^ of the same kind at the end B. The
usual rule of signs being adopted, F^ will be a pushing

force if it is positive, and a pulling force if it is nega-

tive, while the converse will be true of F^.

L
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(2) A force X per unit of mass applied throughout the

infinitesimal slice between two sections of which the

actual abscissae are | and ^ + d^.

149. Let o> be the area of the section, and / the natural

length of the rod. The equilibrium being established, if the

part of the rod between Pp and £ were cut off, in. order to

maintain the equilibrium of the remainder it.would be necessary

to apply to the surface of the section Pp some force J^ per unit

of area, and the condition of equilibrium would be

I*^co+ <of pXd^+Fm = o; (i)

•'ia

where p represents the actual density in the section of which

the abscissa is ^, so that paXd^ is the whole force upon the

interior mass of the slice.

To find an expression for F we observe, that the natural

thickness of any slice being dx, and the actual thickness d^,

the extension is -; 1, and the force per unit of area, on each
dx

face, required to produce this extension, is therefore

{d^ N

supposing no forces (such as X) to act on the interior mass

of the slice. Now when the thickness of the slice is diminished

without limit, the forces on its faces remain finite, being pro-

portional to areas, whereas the interior forces, if there are any,

being proportional to volume, diminish without limit also, and

are therefore negligeable in comparison with the forces on the

faces. Hence q a (- i\ is the force which must be ap-

plied to the surface of the section to maintain the existing state

of extension ; this therefore is the value ofF. Thus (i) becomes

^o+JUdn,{^-.y-o;
which, since x == o when ^ = !„, may be written
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Differentiating this equation with respect to x, we obtain

d^ dH
P^d^+^d^^"-

Let p„ be the natural density of the rod; then, since p^^adx

and pad^ both express the mass of the same slice, we have

d^

so that the last equation becomes

150. To deduce from this the equation of motion, in the

case in which no forces are actually applied except on the sur-

faces of the ends, we have merely to substitute for the force

ap^Xdx supposed to act on the slice, the resistance to ac-

celeration arising from its inertia, namely,— oj p^ ^a: . —^ ; that

d'^i
is, to write yt instead of X. Thus we obtain, putting

dt

Po IF^" ^' ^^^

an equation of the same form as that to which we were led by

the problem of vibrating strings.

The solution of this equation gives ^ as a function of the two

independent variables x and /. That is, it gives the position,

at any time /, of any proposed section defined by the value of

X, its natural distance from the end A.

The solution is

^^ = ^{x-af)^-f{x + at); (5)

and the two arbitrary functions have to be determined by the

initial displacements and velocities, together with the given

conditions relative to the extremities.

151. If in equation (2) we put for p— its value p^, we get

(6)
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If we had considered the equilibrium of the other part of the

rod, we should have found in like manner

^.='((s)„.-)- <«

These two equations merely express that the condition of

extension at each end of the rod is always such as corresponds

to the force applied there.

152. The differential equation (4) is satisfied by such a

value as | _ ^ ^^ (^^ _,. „) gjn (»?«/+ ;3)

;

but in order to satisfy the given conditions in all cases, we shall

find it necessary to add a non-periodic term such as

l-\-c{x—a{)-^c'(x-\- af)y

which is obviously of the general form (5) and satisfies (4).

But the part b-\-{c'—c)at of this term merely signifies a uni-

form motion of translation of the whole rod. Such a motion

may, if the terminal conditions admit it, exist ; but as it in no

way modifies the relative motion of the different sections, which

is all we are concerned with in studying the vibrations, we may

neglect it, and assume only a term kx in addition to the periodic

part of |.

153. We proceed to consider the most important cases.

And first we will suppose the rod entirely free,, and acted on by

no forces. Then F^ = 0, F^ = o, and the two equaitjons (6),

(7), give ^^x
dx '

both when x = and when .a? = /, as the terminal conditions.

Assuming then

^ = kx-\-A sin {mx+a) sin {mai+^),

the terminal conditions are

k +mA cos (mx+ a) sin {mai+^) = i,

when X = and when x = I, for all values of /.

Hence we must evidently have

k=I, COSa = 0, cos {ml+ a) = 0;

of which equations the last two are satisfied hy a = — , ml =iir,

(? being any integer), and therefore
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. . iir X . fii! at \
§ = Jf+ j4 cos —r— sm(^

—

f-jSj

is a solution, A and B being arbitrary ; and making a slight

change of form, as in former cases, we may take

,^8=00 inx , iirat . inat\ ,„,

| = ^+2i=iCos-^(^iCos—J— +^ism-y-) (8)

as the general solution.

(If we included z' = o in the summation, we should merely add

a constant term to |, which would be equivalent to an alteration

of the fixed origin from which | is measured).

154. To understand the equation (8) we must recollect that

I is the distance from a fixed origin, at the time t, of the par-

ticles in a plane section of which the natural distance from the

end A is x. The value of x therefore depends only on the

particular set of particles considered, and is independent of the

origin of ^.

Let us now find the position of the centre of inertia of the

rod. Its abscissa | is given by the equation

IJP^^-^J.P^d^,

the integrations being extended from one end to the other.

Now we have (Art. 149),

hence if we put, in the above equation, — dx for d^, so that the

limits of the integrations are .ar = o and x = l,\X becomes simply

'll=f\dx;
Jo

n p
but from (S) we have / $dx = — ; hence

Jo 2

or the centre of inertia remains fixed (as we know a priori that

it must do under the supposed conditions), and is at a distance

- from the origin of f It must not however be inferred from
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this that the section which, in the natural condition, contains

the centre of inertia remains fixed ; that will only happen when

Ai, B^ are o for all even values of /. In general, no section

remains fixed, the place of the centre of inertia being occupied

by different particles periodically.

155. If the vibrations ceased, the centre of inertia still main-

taining its position, the periodic part of (8) would disappear,

and we should have ^ = x 2A all points of the rod ; hence the

periodic part, which is the actual value of ^—x, gives the dis-

placement, at the time /, of the section defined, as before

explained, by the value of ;*:,

The density at any point is given (Art. 149) by the equation

P Po d^

Hence the general equation (5) gives

^ = cj)'(x-at) +/'{x+ a();

which represents the transmission of two j/a/M of density in

contrary directions with the same constant velocity a relatively

to the matter of the rod. This is not rigorously the same thing

as a constant velocity relatively to fixed space, because x, in the

state of motion, is not the actual abscissa of the particles in a

given section, reckoned from a fixed point, but -differs from it

by the small periodic displacement due to the vibration.

This being understood, we may say that the vibration con-

sists in the transmission, in contrary directions, of waves of

condensation and dilatation
;

just as the lateral vibration of a

string consists in the transmission of waves of lateral displace-

ment ; and the waves appear to be reflected from the ends in

both cases.

156. The periodic part of (8) does not in general vanish for

any value oix, so that there are in general no nodes, or sections

of no displacement. But there will be n nodes, at sections for

which X is any odd multiple of—
, provided A^, S^ vanish for

all values of i except odd multiples of n. Thus the rod may
have any number of nodes, of which those next the ends arg
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distant from the ends by half the distance between any two

nodes.

From (8) we have also — = 3^
p ax

IT
. . tnx / . iirat „ . itTat\

= I — y 2 ? sin —j- \Ai cos — h-ffj sin ~j-) \

hence — = i when x = o and when x = l. That is, there is no

variation of density at the free ends. But there will in general

be variation of density at all other points. If A^, B^ vanish

except when i is a multiple of n, the variable part of ^- vanishes
, ax

when j; is a multiple of — . Hence, when there are nodes, the
71

sections in which there is no variation of density,are those which

bisect the nodal intervals in the state of equilibrium, and these

sections of no variation of density are also sections of greatest

displacement, as will be seen on inspection of (8), since

cos —J- is ± I for values of x which make sin —r— = o.

157. The vibration represented by (8) consists as usual of

the superposition of an infinite number of simple harmonic

vibrations, each of which might subsist by itself; the i^ com-

ponent vibration would have i nodes ; and in this case, as in

the case of the string, the tones corresponding to the com-

ponent vibrations form in general a complete harmonic series.

2/
The period of the i^ component tone is t- , and the period of

. 2 I
the fundamental tone is — .

7
^

Since — would be the time of transmission of a wave over
a

the distance 2 /, we infer, exactly as in the case of a string, that

the wave-length is twice the length of the rod. Since the value

of a (Art. 150) is (—) , the number of vibrations in a unit of

a .
Po

time, or —̂ , is i
^x
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and is therefore, cateris paribus, inversely proportional to the

length. It is, as it evidently ought to be, independent of the

thickness.

158. The most general case in which there is a node at the

middle of the rod is that in which cos -y- vanishes, for all

/
values of t included in the series (8), when x = - . In order that

2

this may be the case, A^, Bi must vanish for all even values of

/. The gravest component tone is then the fundamental tone

of the rod, but the higher tones of even orders disappear.

Thus the first upper tone will be at an interval of a twelfth

(octave+ fifth) above the fundamental tone.

Now in this case the middle section of the rod might become

absolutely fixed without disturbing the motion, and either half

might then be taken ^way, so as to leave a rod of half the

original length, with one end fixed and the other free.

Hence we infer that the fundamental tone of a rod, with one

end fixed, is the same as that of a rod of twice the length, with

both ends free. But the component tones of the rod with a

fixed end do not form a complete harmonic series, containing

only the tones of odd orders. The wave-length is four times

the length of the rod. We shall arrive at the same conclusions

afterwards in a more direct manner.

159. We will next suppose the terminal sections of both ends

to be fixed.

Let /' be the distance between the planes of the fixed ends.

Then, if /' be different from the natural length /, the rod, when

at rest, is in a state of uniform elongation or contraction, main-

tained by the tensions or pressures on the fixed ends. We will

suppose, for clearness, that /' > /, so that the rod is elongated.

Assuming, as in Art. 153,

^ = kx->rA sin (mx + a) sin (mai+P)

(in which equation x has its original meaning), we have to satisfy

d$
the conditions ^ = o when x = and when x = I, for all values



of a Rod. 153

of t. Hence we must have sin(w^+ a) = o when j? = o and
when x = l, which conditions are satisfied by taking

a = o, ml=iiT;

moreover, since the ends are now fixed, we may assume the

origin from which ^ is measured to coincide with one end, so

that ^ = o when x = o; then k must be such that i = l' when

x^l, or k =— . Thus the expression above assumed for ^

becomes

S = jA-+ ^ sm— sm(-y— + ^); (9)

now let x' be the distance of the section defined by x from

the end of the rod when at rest in its actual condition of ex-

tension, then x' =— x; and if we put a' - -- a, and take, as

before, the sum of the particular solutions for the general

solution, we obtain

. , . ITTX f . it: at „ . l'!!dt\ , „
1 = ;); + 2sm-^(^^iCos-^ + ^jSm-^). {(f)

This equation evidently expresses a vibration in which the

velocity of wave-transmission is «' = -r- a ^. Thus the tension to

which we have supposed the rod subjected increases the velocity

' This value of the velocity of wave-transmission might be obtained

directly thus : let T be the tension in the state of rest, T the actual tension

iX any point ; then

r' =,(£-x) and r=,(f-x);

from which we find by eliminating d»,

r=r'+(y+r)(g-i);

if we now investigated directly the differential equatioji, we should find

^=a^^ where a^ -^,

p' being the density of the rod at rest. But /)„ being the unextended density,

we have —r = y =n '

'hence «'-.^^ =
(^)'f

=
(i)'^'-



154 Longitudinal Vibrations

of transmission in proportion to the extension. But the period

2l' 2l . ^—r = — , IS the same as if there was no tension.
a a

160. Comparing (9') with (8), we see that the periods of the

fundamental and other component tones are the same in the

rod with both ends fixed as in that with both ends free. But

when there are nodes they are not at the fiame places. The
rod with fixed ends has always two nodes, namely, the fixed

ends themselves ; the i"^ harmonic component would have i— i

nodes (besides the ends) dividing the rod into z equal parts.

The mode of division in the free rod was explained in Art. 156.

161. The theory of the longitudinal vibrations of a rod ex-»

tended by tension at its ends, is evidently applicable at once to

the case of a string similarly extended, in so far as the assumed

relation between tension and extension may be supposed to

subsist.

The longitudinal vibrations of a pianoforte string may be

excited by gently rubbing it longitudinally with a piece of india-

rubber, and those of a violin string by placing the bow obliquely

across the string, and moving it along the string longitudinally,

keeping the same point of the bow upon the string. The note

is unpleasantly shrill in both cases. (The relation between the

fitch of lateral and longitudinal vibration will be considered

afterwards,)

If the peg of the violin be turned so as to alter the pitch of

the lateral vibrations very considerably, it will be found that the

pitch of the longitudinal vibrations has varied very slightly.

The reason of this is that in the case of the lateral vibrations

the chstnge of velocity of wave-transmission depends chiefly on

the change of tension, which is considerable. But in the case

of the longitudinal vibrations, the change of velocity of wave-

transmission depends on the change of extension, which is

comparatively slight. For experiments on the longitudinal

vibrations of rods, it is convenient to use rods of deal, or of

steel, or glass tubes. One end may be fixed in a stand ; or the

rod may be held lightly io the fingers at the place of a node.
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The vibrations may be excited by rubbing the glass with a wet
cloth, and the rods with powdered rosin on a dry glove.

162. If, instead of supposing both ends of the rod fixed, we
supposed a constantforce applied at each end, the terminal con-

ditions would be i^„ = -F^ = constant. Hence (Art. 151) ~— r
ax

must have the same given value, say ^— i, at both ends. As-

suming then, as before (Art. 153),

^ = kx-^A sin {m.x-\-a) sin {mat+^),
we must have

^—x+mA cos (mx+a) sin (mat+^) =e—j
both when x = and when x = I, and therefore

k = e, cos a = o, cos {ml+a) = o
;

whence, as in Art. 153,

a = -, , ml = lir;

. , •^:,i=<» i'ttX / . iirat _ , tnat\
i = ex+ ^.^^ cos~ {^Ai COS -y— + £i sm -—)

;

and, putting ex = x', el=l', ea = a', as in Art. 159, we should

have

A r . ^-.J=m inx f . ITrai
, „ . lirc^t.

i = x + 2^=1 cos—^{Ai COS—^+ BiSm —p—)

I

in which x' now signifies the distance of any section from the

end A of the rod, supposing it to be at rest under the action of

the terminal forces.

Comparing this result with equation (8) we see that the

(2/' 2/x
= —^ =—J is the same

in both cases, and the nodes are similarly situated.

We infer then that in the three cases, (i) both ends free,

(2) both ends fixed, (3) both ends pulled or pushed by equal

constant forces, the series of component tones is the same.

But the distribution of the nodes, which is the same in (i) and

(3), is different in (2).

The case (3) cannot be realized in practice, because it is

impossible by any mechanical contrivance to apply a constant

force at the ends. In case (2) the force supplied by the fixed
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supports of the ends is a periodically varying quantity, of which

the actual value is that of — ?(-^— i) at the end A, and

q( A at the other end, and the mean value is

163. The only remaining case of practical interest is that in

which one end of the rod is fixed, while the other end is either

entirely free, or loaded with a given finite mass.
We shall shew how the solution of the problem in these cases

may be obtained by means of the more general supposition that

both ends of the rod are loaded, but otherwise free. The con-

dition of fixity at either end can then be introduced by sup-

posing the mass attached at that end to be infinite, and the

condition of perfect freedom by supposing it to be nothing.

Suppose then masses M^, M^ to be attached to the two ends.

The forces F^, F^ (Art. 151) will then be the resistances to

acceleration arising from the inertia of these masses ; and the

terminal conditions will therefore be

whence (see equations (6), (7)),

dk M, dH ,

I = '—- -j-r when x = o,
dx qa> dr
di M^ dH , .

1 = -r^ when X = I.

dx qa dt'

d^ d^^
And if in these equations we substitute the values of — » -j-^ >

from the assumed equation

^ = kx+Asm{mx+ a)sm{mai+p), (10)

we see that, in order to satisfy them for all -values of /, we must

have k= I and M
cot (mx + a) = —mc^—- when j; = o,

qa

2 -^1 1. 1ma''—~ when x = l.

q a

ijet --

—

z =
(jji,

--—i = ^j, then these conditions give
/^o) ^'" Iq

cot (inl-\-a) = ji^in

cot a= —n^ml, 1 ,j ^
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from which, by eliminating a, we find

i^ — l^olhi^^?) ta.nml+iiJ,^+ ii^)ml=o. (12)

164. Suppose m^, m^, &c. are the values of m which satisfy

the equation (12). To each value Wj will correspond a value
of a, say oj, which can be found from (11). Then. (10) will

give the form

1 = jt+ Ssin (miX + ai) {A^ cos m,iai+B^ sin m^ a i) ; (13)

where A^, B^ are arbitrary constants.

This would give the solution of the problem if the values of
m^ were known. These values in general could only be found
by troublesome approximations. We see however that (13)
expresses a vibration compounded of simple harmonic vilsra-

tions, of which the periods are inversely proportional to the

values of wz^, so that the component tones do not in general
belong to a harmonic scale.

165. If we suppose f,,
= o and /Hj = o, then both ends of the

rod are perfectly free, and equations (11) give

cot a = O, cot (ml+a) = 0;

or a = - , ml=t'!r, as we found before.
2

Again, if /*„ = 00 and /n^ = 00 , then both ends are fixed, and
we have ^Qt a = 00, cot (m l+a) = 00,

or a = o, ml = ITT,

as we also found before in the case of fixed ends without

extension.

But if /id = 00 , fij = o, then the end A is fixed and the other

end free ; and we have from (11),

cot o = 00, cot (m l+a) = o,

or a = 0, ml={2z + l)-r,

so that (13) becomes

(2 t + i)nx
^ = x + -s.

2/

,, (2t+i]7rai „ '. (2t + i)nai\ , ^

Here the periods of the component vibrations are the values of

—, and the numbers of vibrations in a unit of time are
(2 t+ i) a

therefore proportional to the odd numbers i, 3, 5, . . . . Thus
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the component tones form a harmonic scale with alternate

tones (namely, the octave of the fundamental tone with all its

harmonics) left out. The wave-length of the fundamental tone
is 4 /, and its pitch is the same as that of a rod of length 2 /,

fixed at both ends or free at both. (See Art. 158,)

166. Lastly, we shall consider the case of a rod fixed at one
end, and loaded with a small mass at the other. Then we
shall have

Fo = °°.
/'i

= f (a small quantity)

;

and therefore, from (i i),

cot a =00, cot (ml+d) = e ml:
the first of these is satisfied by a = o, and the second becomes

cos m I = e m I sin m I.

Now if € were = o the solution of this would be ml= (az'+ i)-

;

2

we may therefore assume

mfl=(2t+i)- + S,
2

6 being a small quantity of the same order as e. Then

cos ((2 «+ 1)- +^) = e ((2 i+ \)- + 6) sin ((2/+ i)- + e)
;

or, quantities of the second order being neglected,

— 6 sin (2 «+ i) - = e (2 i+ i) - .sin (2 i+ 1) - ;

2 2 2

whence 6= —e (zt+i)- t

2

7r

and mJ=(2i + i)-(i—e).
2

This shews that the effect of the small load is simply to

diminish the number of vibrations of every component tone

in the ratio i — e: i. Each tone is therefore lowered by the

same interval, and the whole series still belongs to a harmonic

scale with alternate tones omitted ^.

'^ The following result is found by carrying the approximation one step

further.

Let « mean the ratio of the attached mass to the whole mass of the rod

and the attached mass. Then

where »i is the number of vibrations, in a unit of time, of the unloaded rod.
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167. Since r? = —(Art. 150), the values of i^^, jj.^ (Art. 163)
are Po

how Ip^a is the mass of the rod; hence ju.„, jj,^ are simply the

ratios of the attached masses to the mass of the rod, and e in

the last problem has the same meaning.

168. The results of this chapter afford a method of determ-

ining experimentally the modulus of elasticity by observing the

tones produced by longitudinal vibrations. Thus, taking the

case of the rod with one end fixed and the other free, we have

for the period of the fundamental tone (Art. 165),

a S

and therefore if n be the number of vibrations in a unit of time,

i6n^P =— and ^ a>=i6n^l.Ip.a>

;

Po

now if a second be the unit of time, the weight of the rod
expressed in theoretical units of force is Ip^tog; hence, calling

this PF, we have i6«^/
Qod = . W.

g
Thus the pulling force which would double the length of the

rod, if the law of extension held good without limit, is

X weight of rod.

g
The, value of n can be ascertained with great accuracy by

methods of which the principle will be explained afterwards.

Hence the higher component tones become unharmonic. For instance, the

ratio of the interval between the fundamental tone and the first upper tone

is (to the same approximation) 3 (i +f w^e'), which exceeds a twelfth by an

interval of which the ratio is i + ^ir^t^. This would be a diatonic semitone

if g-T'e'=-j^, or t^ = —3, which gives ^ nearly for the ratio of the

attached mass to the mass of the rod.

The interval by which the first upper tone is put out of tune relatively to

the fundamental tone, being measured by the logarithm of i + -f
tt" «^ varies

as ^ nearly.



CHAPTER IX.

ON THE LATERAL VIBRATIONS OF A THIN

ELASTIC ROD.

169. The theory of the lateral vibrations of a rod becomes

susceptible of tolerably simple mathematical treatment when the

following assumptions are made.

The rod is supposed to be homogeneous. In its undisturbed

condition it is straight, and all its transverse sections are similar,

equal, and similarly situated,

A line passing through the centres of inertia of all transverse

sections may be called the axis of the rod.

We suppose the vibrations to be small, and such that

(i) One principal axis of every section remains in a fixed

plane.

(2) No part of the axis of the rod undergoes any elongation

or contraction.

(3) The particles which in the undisturbed state are in any

transverse plane section, remain always in a plane

normal to the axis of the rod.

(4) The principal axis mentioned in (i) is small. (This is

what is meant by calling the rod thin.)

The plane which always contains the principal axis mentioned

in (i) may be called the plane 0/ vibration.

It follows evidently from the above assumptions that the

condition of the whole rod at any time is determined by the

position and form of its axis.

170. Taking rectangular coordinate axes fixed in space, we
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will suppose, for clearness, that the axis of x is directed hori-

zontally from left to right, and the axis ofy vertically upwards.

Thus the plane of zx is horizontal. We will also suppose that

the axis of the rod in its undisturbed condition coincides with

the .r-axis, and that the plane of vibration is vertical, coinciding

with the plane of xy. Thus the small principal axis of every

section is always in the vertical plane of xy, and the other

(which may or may not be small) is always horizontal. Calling

the axis of the rod AB, we will suppose that in the undisturbed

condition the left-hand end A coincides with the origin.

Let X be the abscissa of any given particle in the axis of the

rod in the undisturbed condition. We suppose (as in the case

of the string) that the vertical displacement of any particle in

the axis is so small that its horizontal displacement may be

neglected. Hence we may consider that x remains constant

for a given particle in the axis, and is the same as the abscissa

of that particle reckoned from the fixed origin. Then, ifjcbe

the (vertical) ordinate of the same particle, y is always a small

quantity. Also, if ds be an element of length of the axis, we

dx dy dy _,,
may put —- = i, 'j~ = ~i- ^ as in the case of the strmg. The

CIS CIS ax

problem is to express j/ as a function of the two independent

variables x and /.

171. In the undisturbed condition let p be the density of the

rod, a the area of the section, and / the actual length of the

axis (which remains constant).

If either one or both ends of the axis are free, / is the natural

length of the rod. But if both ends are fixed at a distance

different from the natural length, the axis is in a state of

permanent extension or contraction, and / is not the natural

length.

When either end of the axis is fixed, the whole of the terminal

face at that end may or may not be fixed. When both ends of

the axis are so fixed that there is extension or contraction, then

if either terminal face be not entirely fixed, we must suppose

normal tensions or pressures applied at all points of its surface

such as would, in the undisturbed condition, maintain all the

M
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longitudinal filaments of the rod at the same length as the

axis.

172. We must first investigate the conditions of equilibrium

of the rod under the action of such forces as could produce a

displacement of the kind supposed to exist at any time during

the motion.

The usual rule of signs will be observed with respect to

forces ; and moments will be considered positive which tend to

produce rotation/rozw the axis of x towards that of^.

The slice included between two plane sections cutting the

.r-axis at distances x, x+ dx from the origin, always contains

the same matter, though its faces are not in general parallel in

the disturbed condition. We shall suppose

(i) A vertical force i^per unit of mass, constant throughout

the same slice (so that i^ is a function of x).

(2) Forces parallel to the plane of vibration, acting on the

particles of the slice, and reducible to a couple, in that

plane, of which the moment is

Z X (mass of slice) = L pa dx,

L being a function of x. (If there were such forces

not reducible to a couple, they~ would in general tend

to produce extension or contraction of the axis.)

(3) A force T^ per unit of area, applied at every part of the

terminal face A, at right angles to its plane.

(4) Tangential forces in the plane of the same face, parallel

to the plane of vibration, and reducible to a single,

force F^ a, in that plane, applied at its centre.

(5) Forces applied to the surface of the face A, reducible to

a couple in the plane of vibration, of which the mo-

,

ment is G^ a.

(6) Analogous forces appUed at the face B, and denoted by

•^1. ^11 <^i-

In the condition of equilibrium these' forces are balanced by

the forces of elasticity called into action by the state of strain

which they produce in the rod.
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Suppose then the equilibrium to subsist. It would not be

disturbed if the part of the rod included between any two trans-

verse sections became rigid. And if the rest of the rod were

then removed, in order to maintain the equilibrium of this part

it would be necessary to apply to it certain forces. We proceed

to ascertain what these forces are, on the supposition that the

part we have supposed to become rigid is an infinitesimal slice,

and to deduce the differential equation which expresses the con-

dition of equilibrium.

173. In Fig. I suppose the plane of the'paper to be the plane

of vibration, and let ah be an infini-

tesimal portion of the axis of the rod,

and FG the section of an infinitesimal

slice contained between transverse sec-

tions cutting the axis in a and b.

Let X be the abscissa of P, the middle

point of ah, and x—\ dx, x-\-\dx the

abscissae of a, h.

Suppose the transverse sections

through a, h meet in C; then (quantities

of the third order being neglected) P C
is the radius of curvature of the axis at

P, which we wiU call R.

Suppose the slice to be made up of

longitudinal filaments having da for the

area of their section; and let a//3 be

the projection of such a filament on the plane of vibration.

Then, if Pp = jj, it is plain that

J. /^

Now the state of extension of any such filament may (since its

length is infinitesimal) be considered to vary uniformly from

one end to the other, so that we may obtain the state of

extension at its middle point by calculating it as if it had the

same value at all its points, that is, by the formula

actual length

natural length

M 3

Fig. I.
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Let then (fx^ be the natural length of dx or al. This is also

the natural length of a/3, so that the extension at/ is

(77 \ dx

Now 1 is the extension"of the axis (which is constant), so
dx^

that if we put ^^ x „

where q is the modulus of elasticity, T will be the value of a

constant tension, per unit of sectional area, due to the per-

manent extension.

Then, calling T' the actual tension in the filament o^. We

have

Hence the pulling force exercised by the filament upon any

element da of the section DE (on either side of it) is

(7'+-|-(^+7'))</o,.

Consider all these forces on one side (say the left) of the

section. They are reducible to a resultant force = — / T' da ap-

plied at P, and a couple of which the moment is / 1) T'da, the

integrations being extended over the whole section. Now since

the ordinate tj is reckoned from a horizontal axis in the plane of

the section, passing through its centre of inertia P, we have

/ I) da - O, and / rj^ da = MK^j

where « is the radius of gyration of the area of the section about

the horizontal principal axis in its plane. Thus the forces

acting on the left-hand side of the section, due to extension, are

equivalent to a resultant force — Ta perpendicular to its plane,

applied at P, and a couple in the plane FG of which the mo-

. ?+^ 2ment is -^=r—Kra,
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- 174, We can now find the forces which must be applied to

the elementary slice in order to maintain its equilibrium when
the rest of the rod is supposed to be removed, the slice having

become rigid.

If we call Q the moment (which we have just determined)

of the couple due to extension acting on the left-hand side

of the section DE, then the moment of that on the left-hand

face of the slice will be

and of that on the right-hand face

The sum of these is

-f^.= -(,+ r).^.^(^)... (a)

Moreover, we found a resultant piflling force Ta on each side

ofP- Hence on each face of the slice there is a resultant

piilling force, applied perpendicularly at a and b respectively.

The horizontal components of these forces may be considered

equal (in opposite directions). But the vertical components

(smce ^ = ^1 are
V ds dx'

these are equivalent to

a vertical resultant force = Ta> j—2 dx, {b)
(Py

' dx^

and no couple. (For the moment of the couple resulting from

the horizontal components is

— Tady, =—Ta>j-dx,

while that from the vertical components is

dy
(diflference of forces) x \ (distance between them) = ^<» ^ dx).
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But we must not assume that the only forces lost by the re--

moval of the other parts of the rod are the couple and resultant

force just found; for the parts removed will in general have

exercised tangential forces in the planes of the faces of the slice,

reducible to resultant forces in the plane of vibration and applied

at the centres of the faces.

Suppose then icFw is. the value of this tangential resultant

force on the left and right sides of the section DE; then, on

the left-hand face of the slice, it will be

and on the right-hand

» 2

These expressions will also give (as we neglect (;f^) ) the

vertical components ; and therefore the forces in question are

equivalent to

dF
a resultant vertical force — <» ^— dx, (.c)

dx '

and a couple of which the moment is

—aFdx. (d)

(The horizontal components, being of the order of (t-) , are

neglected.)

175. Now in the actual condition of equilibrium all these

forces are balanced by those which we have supposed to act on

the interior mass of the slice, namely, a vertical force p a Ydx,

and a couple of which the moment is p <» Z dx. Hence we

must have
(j) + (^) + p „ Ydx = o,

(a) + (d) + p a Z, dx = o.

Introducing the actual values of (a), (b), (c), (d), and ob-

/rfvx" I d^y
servmg that, smce we neglect

\-f-) , we may put —^ = —j-^ >

we find, after dividing by a> dx,
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(?+7')«=g3-i?'+pZ = o. (2)

In order to eliminate' the unknown F, we have only to sub-

tract, after differentiating (2). We thus obtain, finally,

i^_r^+ —

-

dx'^ dx^ dx

as the differential equation which must be satisfied in the con-

dition of equilibrium.

176. We have no occasion to integrate the equation (3) ; but

it is essential to ascertain the conditions which would serve to

determine the arbitrary constants contained in its general so-

lution. These are to be obtained from the data of the problem

relative to the ends of the rod.

Now the forces acting on the surface of the left-hand face

are only the given external forces (Art. 172), and the interior

tensions arising from extension, and these must balance one

another. Hence we must have

i?'^=o + ir =0,

and (see end of Art. 173)

The first of these, combined with' (2), gives

/ (^+r)«^(^)^^^+i^„+p(Z)^=o = o. (5)

These equations ((4) and (5)) will furnish the required con-

ditions. (It is evident that similar equations must subsist at

the other end of the rod.)

177. In order to form the differential equation of motion, we

have now only to substitute in (3) the forces arising from the

resistances of the particles to acceleration, instead of those sup-

posed to act on the interior of the mass.

Hence, instead of the vertical force paFdx, supposed to act

d^y ,

on the mass of a slice, we must substitute —^a—^dx or

— v4 instead of Y,
dx^
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-And instead of the supposed couple paL dx, we must sub-

stitute one which is found as follows

:

Since the particles in a plane transverse section remain in

a plane section, and since the inclination of the plane of the

dv
section to the vertical is -^ , if ij be the ordinate of a particle

drn, reckoned (as in Art. 173) in the plane of the section from

, , its horizontal principal axis, the angular velocity of the plane

being -—
- (^^ (in the direction of positive rotation), the linear

at ^ax-'

velocity of dm (estimated from right to left) is ij -^ v- , and

therefore its resistance to acceleration (in the same direction) is

— rj (-j-\ -^ . dm, and the moment of this resistance, with its
\dt^ ax V 2 J

proper sign, is — "J^T-r) -r- • d^- Now, considering dm as the

mass ofan element of an infinitesimal slice, we have dm = p.dadx

;

hence the above moment is

-"
-dPd^'"^""^'''

and taking the sum of all such moments for the whole slice,

we have ^^ r a^y

-piFd-x^^r^""=-''''''-d^x^='

as the expression to be substituted for paLdx. Hence we

must put -K^ , ,
instead of Z.

^ dr dx

Making these substitutions in (3) we obtain

as the differential equation required ^.

' See Klebsch, Theorie der Elasticilal fester K'drper, § 61, where this

equation (with a different notation) is deduced, as a particular case, from

the general theory of elastic solids. The equation usually given in ele-

d*y
mentary works does not contain the term

^ ^ , which arises from the

angular motion of the sections of the rod. (See, for example, Poissou,

Traiti de Mecanique, tom. ii. § 5.) It may in fact be neglected without

sensible error in ordinary cases.
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178. This may be put in a somewhat more convenient form

as follows

:

Put q-\-T=I? p, T=a^p, and it becomes

(In order to see the homogeneity of this equation it is de-

sirable to observe the meanings of a and b. Ta> is the actual

tension, and p the actual density, in the axis of the rod. ^ <» is

the tension which would have to be applied to the rod in its

natural state in order to double its length, if the law of ex-

tension held good without limit. Hence Ta> and q o> are forces,

and can be represented by weights, say by the weights of

lengths X and \' of the rod, taken at its actual density p. Then

Ta =g p\a>, qa =g

p

X'ffl, and therefore

g{\+ \')^b\ g\ = a?;

so that a^, P are the half squares of the velocities which would

be acquired by a heavy body falling vertically down distances X,

X -)- X'. Hence a and b are of one dimension in space and — i

in time.)

179. In order to find particular integrals of {6') we assume

V = « cos — / -1- » sm — /, (7)
K K

u and V being functions of x to be determined.

Substituting this value of j/ in (6'), we find an equation of

the form »2
. , tz ^

.U cos — i+ K sm — / = o,
K K

in which £7 and Fdo not contain /; so that in order to satisfy

the equation we must have separately

U= o, F= o.

These equations are exactly similar in form, and we therefore

need only consider one of them. The first is

„ „ rf*« , „ „, d^u m^ ,„...,._ + (^3_,.)____, = ,.
^ (8)

which, being linear with constant coefficients, can be integrated

in the usual way. The" general solution is
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where k^, k^, k^, k^ are the foots of the equation

^bn^^{m^-a')k^-%^o; (9)

which gives ,„ i ,

^'=2-^2{'^'-«'±((«''-^'T + 4'«^3^)*}. (9') -

We may represent the four values of k in the form

± ^1 {m), ± <^2 {ni)
;

and, making for convenience a change in the meaning of the

constants A,B, C, D, we may put the values of u and v in

the form

« = ^ 1-5
2 2

+ C +D
; (10)

2 2 ' ^ '

» = a similar expression with different constants, say A', B',

C',U.

180, Introducing these values of u and v in (7), we obtain a

value of_>', which is a particular integral of (6'), and in which
all the constants, including m, are arbitrary, and would remain

so if we had only to satisfy (6'). But in every actual problem

we have also to satisfy the terminal conditions ; and these con-

ditions lead to an equation of which the roots are the only

admissible values of m, besides other equations which partly

determine the constants A, B, &c.

Before investigating these conditions however in particular

cases, we will examine more closely the nature of the four

values of k. Since the last term of (9) is negative, one value

of W' is necessarily positive, and the other negative. Suppose

we call the positive value c? and the negative value — /3^, then

we shall have

^= ± a, k= i: 3v — I

for the four values of k ; and thus we may put (10) in the form
,aa:_i_-—aa: -aa; — aiB

u = A + B h CcosjS.r+ Z'sin^x, (11)
2 2 ' \ /

in which it is important to remember that a, ^ are determinate

functions of m, given by (9), while the value of m itself has still

to be determined.
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181. We will take now the case which is in some respects

the most simple, namely, that in which the ends of the axis

of the rod are fixed, but the terminal faces are subject to no

other constraint. (The tension T, which must be supposed to

be applied to them on every unit of surface, will evrdently leave

the directions of the faces free.) This case is of practical in-

terest, because it may be taken to represent that of a wire

(e. g. a pianoforte string) of which the vibrating part is de-

termined by stretching it over bridges.

Now referring to the terminal equation (4) (Art. 176) we see

that on the suppositions now made we must put G^ = o, and

consequently ^2

dx'^
~

at both ends of the rod. (The equation (5) gives no condition.

It would merely serve to determine the value of the pressure

Ff^a supported by the point to which the end of the axis is

fixed.)

But the fixity of the ends of the axis gives us two more

conditions, namely, y = o

at both ends. We have then to put in (7) the value (11) for «,

and a similar value for v, with A', B', &c. instead of A, B, &c.,

and then express the conditions that

both when x = o and when x = l, for all values of t. These

conditions, relatively to .^i? = o, give, as will be easily found,

AJrC=o, A'+C' = o,

a^A-^C=o, ",M'-^='C" = o;

which it is impossible to satisfy otherwise than by

A = o, C=o, A'=o, C"=o.

The conditions relatively to x = / thus become simplified, and

are
4- i? sin |3 / = o,

-/32Z'sin(3/=o,
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with similar equations for B' and If. These give

B— -=o, Z?sin/3/=o;

now the factor multiplied by B cannot vanish, since a is real.

Hence we must have

B = o, B' = o, sin^/=o.

Hence D and U remain arbitrary, while |3 must satisfy the

equation sin /3 / = o, which gives

182. The values of «, v (see equation (11)) are now reduced

to u = D sm. ^x, V = ly sin ^x, and therefore from (7)

• ^ /t. ^^ TV • '>ni\
y = sin.^x (Dcos 1- Z' sm— )j

i 7T

in which j3 may have any of the infinite series of values —
obtained by giving all values to the integer z from i to 00 , and

to each value of /3 corresponds a value of m obtained from (9)

by putting k^ = — ^^. Hence, taking the sum of all the par-

ticular values of _j/, we have for the general solution of (6')

appropriate to this problem

y = ^i=i sm-^(Qcos-^ + Asm-i-); (12)

where 0^, 2?^ are arbitrary constants in the usual sense, that is,

depend only on initial displacements and velocities. (It will be

easily seen that it is useless to include negative values of i,

since w^ (see next article) only depends on P)

183. Solving equation (9) for w", we find, after slight re-

ductions, ^2 d'-K^Pk''
bi •

2 "" » 2 A2 »
K I— K «

and since, for real values of /3,

the above formula gives

72 -2 1 .-2 _2 .2 12

(13)
m? Pi^ l^a^+i^K^i

/2 /2 + «V2/c2
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Now (12) shews that the vibration is compounded of simple

harmonic vibrations of which the periods are the values of ;

mi

or the number of vibrations, in a unit of time, of the i"^ com-

ponent tone, is •

—

—
. Calling this number n^, we have from (13),

a TT (C

i ^Pa^ + r-7r\H\i

This shews that in general the component tones do not belong

to a harmonic scale '.

184. Let us however examine some special cases.

If we suppose the rod infinitely thin we may neglect k al-

together. The differential equation (6') then reduces itself to

^_ <f>

df"
'"

dx''

the ordinary equation for a perfectly flexible string; and (14)

t (Z

gives «j = —
-J,

the value found before.

But if we consider the rod as very thin, without being in-

finitely thin, so that —^ is a very small fraction, the value (14)

will be applicable to the case of a metallic string or wire. In

this case, neglecting the square of -j^, and assuming the

section of the wire to be a circle with radius r, so that t^ = j r^,

id
hence if we put —r = iV^ (the number of vibrations calculated on

the supposition of infinite thinness or perfect flexibility ^), and

put for b"^ and c^ their values (Art. 178), we have

' The process which has been given in Arts. 179-183 is substantially

the same as that of Klebsch, § 6i.

^ Strickly speaking, the supposition of infinite thinness ought to be dis-

tinguished from that of perfect flexibility. We can imagine a thick string

of which only the central infinitely thin axis should resist extension or con-

traction. Such a string might be regarded as perfectly flexible. But the

we find
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•.=*.hT?4|'
which gives what is called the correctionfor rigidity.

This correction may be put in another form thus: from

(14) we have

"< 77
('' + '' -"^ («'- "'))* o="iy.

so that for a given value of i, that is, for a tone of given

order, the number of vibrations corresponding to any actual

tension T may be calculated as if the string were perfectly

flexible, by substituting for 7' a fictitious tension

TT^ r"" q
41-

The term thus added is sensibly independent of T, since / (the

actual length between the bridges) is constant, and r is sensibly

invariable, at least for moderate variations of T. If the tension

be supplied by a weight W, then W= Ta. Suppose Q is the

weight which.would double the length of the string if the law of

extension held good indefinitely, then Q = qa>. Hence the

fictitious weight to be substituted in calculation for the actual

weight is „2 „z

W+i^j^Q.

It would be difficult to calculate the value of the added term

a priori, because the values of the very small ratio \^) and of

the very large weight Q, could hardly be obtained with sufficient

accuracy; but it is easily ascertained experimentally by com-

inertia of the outer parts would introduce the term
. „ . „ in the differential

equation, though the term —^ , which arises from the resistance of the outer

parts to extension or contraction, would disappear. But the strings used

for musical purposes never approximate to this character, though the con-

verse arrangement is common, e. g. in- guitar strings made by winding fine

wire upon a silk core.
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paring the tones produced by two different weights. The tones

corresponding to other values of W can then be calculated,

and they are found on trial to agree very exactly with those

actually produced.

185. We will next suppose that, the ends of the axis being

still fixed, the distance between them is the natural length of the

rod, so that T= o; hence a = o, and (14) becomes

I ., K h

where d^ = —
P

In this case, since k is small, the values of n^ are, for moderate
,

values of t, sensibly proportional to the series of square num-

bers i'^, 2'^,
s"*, &c., so that the component tones are the i^t,

4tii, 9th &c. of a harmonic scale. Thus the first of the upper

tones is two octaves above the fundamental tone; and the

second is one octave and a major second above the first ; &c.

The supposition now made may be approximately realized in

several ways, of which the simplest consists in merely laying

a rod (e. g. a bar of steel) upon two bridges placed as close as

possible to its ends.

186. If, instead of merely supposing the ends of the axis

fixed, we had supposed the planes of the terminal faces of the

rod to be fixed, then, instead of the simple formula (13) which
gives the values of m, we should have found a very complicated

transcendental equation. The same thing happens if one
terminal face be fixed and the other entirely free, or if both be
entirely free. In the two latter cases this equation is always

somewhat simplified by the circumstance that T== o, and there-

fore a = o. But it becomes much more simplified if we neglect

d*y
the term

^
in the differential equation, which we may

generally do without sensible error. We shall therefore intro-

duce this simplification in what follows.

187. Since the differential equation was founded on the

hypothesis that the particles which in the undisturbed state are

in a plane at right angles to the axis continue to be so at all

times, if a terminal face of the rod be fixed, the axis at that end
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must always be at right angles to it ; and as the end of the axis

itself is fixed, we must have, at that end,

dy

These therefore are the terminal conditions for a fixed face.

But if a terminal face be entirely free, we must obtain the

terminal conditions from equations (4) and (5) (Art. 176).

Now, at a free end, G^ (or G^ and F^ (or F^ are both o.

Also L, in (5), arises (see Art. 177) from the angular motion of

the planes of the elementary slices, the effect of which we are

now going to neglect; hence these equations give

d^y _ ^_
dx'~°' d^~°

as the terminal conditions at a free end.

We have already seen that the conditions are

d^y

^ = °' ^^=°

at an end where only the extremity of the axis is fixed, so that

the direction of the plane of the face is free.

There are altogether six possible combinations, of which,we
•have already considered one. Of the remaining 'five we shall

only examine the three which are of most importance, namely,

both faces fixed, both free, one fixed and the other free.

188. The equation (6'), if we omit the second term, and put

fl = o (since we suppose T = o), becomes

^ +«'^ = o. (.5)

To find particular solutions of this equation, we may con-

veniently assume

y =u cos -p- m't-\-v sm -j^ m'i; (16)

in which u, v are to be functions of x, I is the length of the

rod, and m a constant to be determined. Substituting this

value of>' in (15), we find that in order to satisfy that equation

for all values of /, we must have

d'^u _ w* ^v_ n^

The general solution of the first of these equations may
evidently be written in the form
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, mx „ . mx
M = ^ cos —-—h B sin ——

-

mx mx mx mx
~T

I
r "T r

+ ^^^^- +^^-i^; (x7)

and » will be given by a similar equation, with other constants
A', B', C, D'.

It will save much trouble to adopt the following abbreviated
notation.

Let _J__ = .(5), ___ = a(5).

Then we shall evidently have,

(7(5) = ,t(-5), 8(5) = _8(-^), ,r(o)=i,.

8 (o) = o, —a-{n6) = nh{n ff), —-h(n6) =n<T {n 6).

189. Thus the equation (17) becomes

. mx ^ . mx „ rmx^ ^^rmx-^ , „.
« = ^cos-^+5,sm-y-+C<r(—)+Z»8(—); (18)

and we have now to find the values of the constants which will

satisfy the terminal conditions in each case.

First, then, let us suppose both ends entirely free. The con-

ditions (see Art. 187) are

dx''
~°'

dx'~°'
both when x == o and when x = I ; and since these are to be
satisfied for all values of /, it is evident that we must have

d^u d^v d^u d^v

'd^^°' dx^^°' 1^'^°' d^^^°'
Putting then x = and x = I successively in the values of

these differential coefficients deduced from (18) and from the

corresponding expression for v, we find (for x = o)

-A + C = o, -B+D = o;

so that

. / mx /mx^\ _/ . mx ^/mx\\
u = A ^cos— + <r(—)j+5^sm-y-+S(—)];

and then the conditions relative to x = l become

A[— cos 711-^ (T {m)) +B {—sm m-\-b{m)) = o,
'l

, .

a\ sin ;«-t-S (ot))+ -5(-cos»z-|-<7 (w))-o ;j
^ '
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from which, eliminating A and B, we have

(o- {m)— cos nif = (8 (jriff— sin^ wz

;

now, by the definition of a {m) and (8 (»«)),

hence this equation becomes

a- {m) cosm = 'i, or

cosw=i. (20)

The roots of this equation are the admissible values of m ; and
if we denote them by m^, m^, &c., and call A^, B^ the corre-
sponding values oi A,.B, either of the equations (19) gives the
ratio A^ : B^. We may therefore take

^i= Q(sin »2^-8(»z^)),

^i= -Ci (cos m^ - <r (w^)),

where Q is arbitrary. Thus we shall have from (18)

Ui=CiXi, where

Z, = (sm»2i-8K)) (cos-^- + <r(-i-))

-(cos»?i-aK)) ^sm-j- +8(-^)j; (21)

and v^ = D^X^, where ZJj is another arbitrary constant. The
general value oiy, which is the sum of all particular values,

will then be

y = -S,Xi {Ci cos '^ m,H+Di sin "-^ w/ /); (22)

and this is the equation expressing the vibration of a rod free at

both ends.

The constants Cj, iP^ are determined by the initial displace-

ments and velocities, in a manner which will be explained

afterwards.

190. If instead of supposing the ends of the rod entirely

free,, we suppose both the terminal faces entirely fixed, the

terminal conditions are (Art. 187)

dy
^ = °' ^ = °'

both when x = and when x = I.

Assuming then (16) and (18) as before, and proceeding

exactly as in the last Article, we find the same equation (20) for

the determination of the values of ot^, but
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A^ = C^ (sin w^— 8 (w?;)),

and ^ = Si'i (C.cos '^»z// +A sin*^ »///), (23)

where i'; = (sin w^- 8 (w^)) ^cos^ - o-(^))

-(cos»2i-o-(»zJ)(sin^-8(-j-)]. (24)

Comparing the expressions (22), (23), we see that the com-
ponent tones have the same pitch, whether the terminal faces

be both free or both fixed. For the values of m^ are the roots

of the same equation (20) in both cases, and the number of

vibrations in a unit of time, for the tone of the t^^ order, is

The constant 6 depends (Art. 178) only on the material of

which the rod is made, and ntf is an abstract number, inde-

pendent both of material and dimensions. Hence, when the

material is given, the number of vibrations, for a tone of given

order, varies inversely as the square of the length of-the rod,

and directly as the radius of gyration of the sectional area about

that diameter which is at right angles to the plane of vibration.

If the section is elliptic or rectangular, then k is simply pro-

portional to the thickness measured in the plane of vibration.

191. In the last Article it was supposed that both the terminal

faces were fixed, but that there was no permanent tension, so

that the natural length of the axis was maintained.

The supposition of permanent tension, with fixed terminal

faces, leads to much more complicated equations, but they may
be treated in an approximate manner in the only case of

practical importance, namely, that in which the thickness of the

rod is very small compared with its length. The result may
then be considered as giving the correction for rigidity for a

wire, or for a long and thin lamina, not stretched over bridges,

but firmly clamped at the ends.

We may take in this case the equations (7), (9), and (11), as

in Arts. 179 and 180. But we shall suppose the term ^ ^

in (6') to be neglected, so that instead of (9') we get the simpler

form 2(c2^^/l'' = a2±(«*+ 4»«'^^)*;

N 2
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and therefore, since a^ and — j3^ are the two values of 1^, we may
write the value of c? thus :

2K -o-

and i3^ will be given by changing + 1 into — i in the last term

of the numerator.

Now in the case of a metallic wire or lamina, -— is a large

number (see Art. 178) since T is small compared with q. But

K

1
is very small ; and the legitimacy of the following approxi-

mation depends upon the assumption that -^ is so small that

-j2 2" ^^ ^^^° ^^"^y small. From this assumption it follows that

a / is very large, since <? P is expressed by a fra9tion in which

the numerator is > 2 and the denominator is the small fraction

'LI

dv
Yi.Qiy^ the terminal conditions are _y = o, — = o, at both ends

;

and from these, proceeding as in Art. 189, we find from

equation (ii) ^ + C = o, aB-\-^D = o,

J o- (a /) + 5 8 (a /) + C cos /3 /+ Z> sin /3 / = o,

a(^S(a/)+-5<r(a/))+^(Z»cos^/-Csin^/) = o;

and hence, eliminating A, B, C, D, and reducing by means

of the identity (o- (a /))^- (8 (a l)Y = i, we find, finally,

8 (a /) sin (3 / ,
2 a ^

I — o- (a/) COSfil

and if in this equation the values of a and ^ given above were

introduced, we should obtain an equation in m, of which ihe

roots would be the values of m^, m^, &c.

Now the values of a', PP give, as will be found at once without

difficulty, -TZT^ = ~r ^^'^^ ^'^^^^ " ^ ^^ very large, we have,

neglecting e-"^, o-(a/) = S (a/) = •|€+'^', and the equation irn)

becomes i£»^sin/3/ 2mb _
i-Aeo^cos^/"*" a^

~°'
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or, <=-»^ being again neglected,

tan /3 / =—;— .

w'

Now the value of^ gives

P ^^ = -5-2 nearly

(by developing the binomial as far as the second term) ; hence

, ^ ml
//3 =— nearly.

Ka '

But the number of vibrations in a unit of time is ; and

since the case differs very little from that of an infinitely thin

Z CI lYll
string, this number differs very little from — , so that — differs

2 / K.a

very little from iir, or ;3/= zV+ 5, where is very small; hence
2mb

. 2mb—^ = tan /3 / = tan fl is very small ; and we may take —^ = 6,

and therefore „ , . 2mb
/3/= zttH =-

J

, ... ml
and, equatmg this to — , we have

Ka

/ / 2 i5vm

or, introducing the subscript index to distinguish the different

values of m,

m, lira . K d\~'- lira f k b\ .

T=— (^-^7^) =— (' + ^7a) •^""'^^-

Let »; be the number of vibrations, in a unit of time, of the

z'* tone, and N^ the number calculated on the supposition of

infinite thinness ; then

717-
^'^ J % 1.

iV, = -, and «,= ^^; hence

«, = i\^,(i+2i|) = i\^, (1 + 2^(1 + -^f). in)

Comparing this with the corresponding expression deduced

in Art. 184 on the supposition that the directions of the terminal

faces were free, viz.

N^
. / I' it' k' g \ , ,,
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we see that they differ essentially, especially in this respect, that

in the case («) oi fixedfaces the pitch of all the component
tones ' is raised, by the rigidity, through the same interval, so

that they do not cease to form a harmonic series ; whereas

in the other case («') each tone is raised through a greater

interval than the next lower one, and the series is therefore no
longer strictly harmonic.

An expression equivalent to («), and obtained by nearly the

same process, was given by Seebeck''-, and found by him to

agree with experiment when the ends of the wire were clamped.

In the case of a wire stretched over bridges, the form («')

has been found to agree with experiment, in the manner
mentioned at the end of Art. 184. But the deviation of the

upper tones from the harmonic scale is probably too small

to be made sensible to the ear.

192. The last of the cases which we proposed to examine

is that in which one terminal face (suppose that at which x = o)

is fixed and the other free. The conditions then are (Art. 187)

y -o, -f- = o, when x = o,
ax

<Py d\y^ = °' ^ = °' ^^^" ^ = ^-

Again then, assuming (i6) and (i8), we find in the first

place A + C=o, B + I) = o, and then

A (cos m+ <r(m)) +B {sin m+ 8 (m)) = o,

A (sin m— 8 {m))—B (cos m + a- (m)) = o

;

eliminating A and £ we obtain, after reduction,

a-{m) cosm = — I, or

^m _i_ p—

m

COS w = — I (25)
2

as the equation for determining the values of m ; and we may
take ^_ c, (sin m, + 8 (m,)), B.^-C^ (cos m, + a («,))

;

so that the' value ofj^ will be

J/
= 2 Zi (C, cos ~- %'/+A sin

"-ji
m? i)

;

(26)

in which Cj, Z>j are arbitrary, and

' See the memoir referred to below (Art. 205).
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Zi = {%mm^-\-h{m>i) (cos -^ " \rr)

-(cos»Zi + <rK)) (sm -j
^("i"))-

(^^^

Since the equation (25) is not the same as (20), the periods

of the component tones will not be the same as in the two
former cases. But the law of their variation with the length

and sectional area of a rod of given material is still the same as

that stated at the end of Art. 190.
193. To complete the solution of the problems considered

in Arts. 187-192, we should have first to find the roots of the

equations (20) and (25), which determine the periods of the

component tones, and then to find the values of x which satisfy

the equations X^ = o, i^^ = o, for each root of (20), and Z^^o
for each root of (25), in order to ascertain the positions' of the

nodes corresponding to each tone. The required calculations,

for small values of i, which belong to the most important tones,

are troublesome; especially those which relate to the nodes.

And we shall only give a sufficient specimen of them to enable

the reader, who may be, so disposed, to verify the results which
will be given below.

First, then, we have to find the values of m^y which are the

roots of the two equations (see (20) and (25)),

cos X = ± x\ (28)
3

where the upper sign corresponds to the case of both ends

fixed or both free, and the lower to that of one fixed and the

other free.

It is evident on inspection that if m be any root of either

equation (28), then — w, and ± « \/— i are also roots; now
observing that

co^ {—m6) = co%m6, a- {—m 6) = a- (m 6),

cos {±md\/—i) = <r(md), (T{±m6\/— i) =zo%m6,

sin(— OT^) = — sinOT^, h{— m6) = —b(m.6),

sin( -twi^V — j) = ± V— 1 .8(»2 5),

8 ( ± OT 5V — i) = ± V— I . sin OT 5,

we see, on examining the forms of the functions X^, F^, Z^,

that the effect of changing any one of the four values ± tn^,

±mi\/—i into any other, will in every case be merely to
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multiply the function by one of the factors ±1, ± v — i ; and
consequently all the four terms in the value o/Ly givea by the

four roots, can be united into one term of the form (22), (23),

or (26), according to the case in question. It is therefore only

necessary to consider the positive real roots of (28).

194. The' position of the roots of (28) may be most clearly

exhibited by a graphic construction. If we draw the curve

of which the equation is

e=" + €-'^

V = cos X,
2

it will cut the positive axis of x at distances

222
from the origin, and the distances from the axis oiy at which

it cuts the two lines>'= +1, will be the positive roots of (28).

The curve itself will consist of a series of unsymmetrical waves,

of which the amplitudes increase without limit. In Fig. 2, the
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2 2 2

the values of— are alternately negative and positive, increasing

numerically without limit. Hence the roots corresponding to the

upper sign are alternately greater and less than — j — > &c.,
2 2

and those corresponding to the lower sign alternately greater

and less than - , ^^—
, &c. On the scale to which the figure is22

drawn, the portion of curve p^ P^ is quite undistinguishable from
the ordinate at C.

We will now shew how to calculate the values of Q P^, QP^,
Pp.-

195. Suppose that in either of the equations

e^ + e-^
cos X = ± I

2

we have found an approximate value of x, say x = m. Then,

assuming m + a as the true value, we have

fm+a _j_ f—m—

a

cos (m + a) = ± I

.

2 ^ '

Developing this, and neglecting powers of a above the first,

we find (using the notation explained in Art. 188)

cos m . or (m) =F I / \
a = -, ^—^ . (29)

smm . o- (m) — 8 (m) cos m
If the value m + a thus found is not sufficiently exact, then it

must be assumed as an approximation, and the process repeated,

and so on as often as may be necessary.

We will take as an example the case of the fundamental tone

of the rod with one end fixed. We then have to find the least

positive root of (28), taking the lower sign; and we have seen

(Art. 104) that this is somewhat greater than -
. Assummg

then x = - + a as a first approximation, and puttmg m = - m
2 z

(20) we have i „ ,
^ ^' a = = 0.398 nearly.

Assuming therefore

X = - + 0.398+ a',
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we shall find the valte of a by putting

m = - + 0.398
2

in (29) (taking the lower sign in the numerator). This gives

a' =—0.089 ^iid .r=i.88 nearly.

The next approximation gives

.r= 1.8751,

which is sufficiently accurate.

196. For the higher tones of the rod with one end fixed, and
for all the tones of the rod with both ends fixed or both free,

the approximation is more rapid. The following are the results

in the two cases

I. II.

One end fixed and one free. Both ends fixed or both free.

»Zj 1.8751 4-7300 I

^1 4-6940 7-8532 x:\i>

^3 7-8548 10.9957 ^-^^
OT, 10.9955 14-1372- Q_

For still higher tones the formula
i
i.'!i

-^'

OT. = (2^TI)-

may be used without sensible error, the upper sign belonging to

case I. and the lower to case II.

The numbers of vibrations, being proportional to the values

of m^, are, for the higher tones, sensibly proportional to the

squares of the odd numbers.

197. To find the interval between any two tones we may
proceed as in the following example. The interval between the

fundamental tone and the first upper tone, of the rod with one

end fixed, is defined by the ratio (-^—^— ) , of which the

logarithm is 0.79704; and observing that log 6 = 0.77815, we
find that this ratio is equal to 6 x 1.0445 nearly. Now

^•^445 = i+^^&c.,
of which the first three convergents are ti ff> tt > hence 1-0445
exceeds ff by a fraction less than -^, and the ratio of the

interval is therefore a very little less than

6V 23 _4 y S V 23
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It follows that the interval is = two octaves + fifth + (ff) nearly ;

and the interval (ff) is a little less than f'^'s of a diatonic semi-

tone, for (if)* = fj- nearly.

Hence, if the fundamental tone were C, the first upper tone
would be flatter than b a' by a little more than a quarter of a

diatonic semitone '.

In this way we find the following to be the four first tones of

a rod in the two cases, supposing the fundamental tone in, each

case to be C.

I.
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This equation (subscript indices being omitted) is

[smm + S (m)) (cos— "^("7"})

— {co%m + <T(m))\wx— 8(^—jj=o, (30)

in which m is a determinate root (w^) of the equation

<r(»?) cos »z = — I. (31)

The equation (30) may be transformed as follows

:

From (31) we have o- {m.^ = —sec ot^, and therefore

(8(«2,))==(^K))2-i=tan»z«,.

Now we have seen (Art. 194) that m^ is greater or less than

(2 z'— i) - according as i is odd or even, so that we may put

(i = o being excluded)

% = (2 2-l) '^-(-)'aj (32)
2

where a^ is a small positive quantity, which diminishes in-

definitely for increasing values of i.

Hence cos 1n^ is always negative, and sin m^ has the same

sign as sin(2z'— i)-, that is, (— )'"'"'• Consequently, since
2

S {m>) is necessarily positive, we must have

S {"'d = (— )' t^'ii w» = cos in tan%

;

and therefore

sin ra^+ S (»Zj) sin Wj+ cos z'tt tan W; cosWj + coszV

cos m^+ cr (mf) cosm^— sec w^ sin « ^ + sin z' n-

mi + tir
= — cot -

;

2

and (30) is therefore easily seen to become (indices being

omitted)

/tnx m + zir^ /mx-. m + iTr
cos (-- ) — iri—r-) cos

2

which is reducible, by means of the identities

cos 5 + sin 5= \/2 .sinr^+ -), cos^^sinfl= •y2.cos(5+ -),
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to the form
mx

1— /m X M+ tTT-. —r- , ,m+ zir 7r\
V2.cos(-- )— 6 sm ( 1--)\/ 2 ' ^2 .<-'

mx
4'

— e ' COS( 1— ) =0. (30)
N 2 4^

Now let the origin of abscissae be removed to the middle of the

axis of the rod, by writing x + - instead of x, so that x will
2

now mean the distance of a node from the middle point. The
above equation then becomes

mx m ,
.rmx Zttn — — . fm + ttt 7r\

V2.cos(—; )— e • ^^ sm ( 1—

)

^ I 2 ' - '^ 2 4'

fm-^rlTT TTv
cos I

Now from equation (31), which is

= — sec m,
2

we get (by adding and subtracting i)

m m

^ (e^ +£ 2)2=— sec m sin^— 1

2

m m
^(e^ — c ')^= -secwcos^—

;

and since sec m is always negative, whilst the sine and cosine of

— have the same signs as the sine and cosine of (2 z'— i) -
2 4

(as is evident from (32)), these equations givemm
fS-i-e 2 =2V— secOT.sm— sm(2z — i)-i

2 4

- — / m TT

e2_g 2 =2V— secOT.cos C0S(2Z— i) —

,

2 ^ '4

and thence, by addition and subtraction,

—
, /m in 7r\

f2 = V— £cc»z.cos( h-l
^ 2 2 4^^

-— / rm in n-v

_e 2 = V— sec»i.cos( 1 )•
V 2 2 4'
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Introducing these values in (33), and observing the identities

sin 6 cos ^ = \ (sin (^+ ^) + sin (6 — cj))),

cos 5 cos ^ = I (cos (^+ <^) + cos {6 - (}))),

•we find, after obvious reductions,

V2.C0S(-- j+^V — COSOT. (« ' — e 'cosz!r) = o;

but from (32) it is evident that

COS mf=— sin a^

;

hence the equation becomes
m^x mix

cos (—^ '\ + ^V^Smaf.(e' —e ^ COS zV) = O. (34)

Another form is obtained from (33) by substituting for m^,

under the sine and cosine in the last two terrns, the value (32).

This will easily be found to give

V2.cos(-j )+ e ^' •^''sm^Oj

— e ^« <" COS Z TT cos ^ Oj = O. (34)

199. To find the places of the nodes when both ends are

free, we have (see Art. 189) to solve the equation

(smm—s{m)) (cos—^—'"'^(~7^))

- (cos OT- <T {m)) y sm -j- + 8 (-^) j
= o

;

(35)

in which w is a determinate root {m^ of the equation

o- {m) = sec m

;

and (Art. 194), z'= o being excluded,

TT

mi = {2t+i)~-{-y^i, (36)
2

where p^ is a small positive quantity, which diminishes in-

definitely for increasing values of t.

In this case cos m^ is always piositive, and = sin /3j ; and,

proceeding as in the last Article, we find

8 (m^) = tan m^ cos zV ; also
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sin m,— h (m,) m,- + iir
1-^ = tan —^

, and
cos m^~ a- (nii) 3

e ^ = «/sec»Zi COS (—^ + (^
1

—

)\;

hence (35) becomes

V2sin(— )+ (! cosf + -^
^ i 2 ' ^24'

mx ,
•—=- . ,m-\-nt 7r\

— f ' sm ( h — ) = o :

\ 2 4^

and, transferring the origin of abscissse to the middle point of
the axis as before, we obtain finally, instead of (34) and (34'),

the two equations

iriiX

-y---Y)+ivisin/3i.(e' -e «coszV) = o; (37)

V2sm(-i )+f ^^ ^''sini/3.

— € ^i ' cos z n- COS ^ /3j = o. (37)

200. The equations (34) or (34') and (37) or (37') de-

termine, in the two cases, the positions of the nodes for each

value of t, that is, for each component tone ; the value z' = i

belonging to the fundamental tone in both cases. The values

of X which lie between —^l and + 5 / give the distances of the

nodes from the middle point.

The numerical values of m^ in the two cases have already-

been given. The values of a^, (3^ are the differences (taken

positively) between these numbers and the values of (2 z'+i) -,

and are as follows :

^

0^ = 0.3043, /3^ = 0.0176,

02 = 0.0184, /Sj = 0.0008,

03 = 0.0008, |33 = O.OOOT.

(For values of t above 3, there is no significant figure in the first

four decimal places.)

201. We will first consider the case of the rod free at both

ends, which is the simpler of the two.

It is evident that equation (37) is satisfied hjx = o when
/ is even ; and that, in all cases, if x' be a root, then — x' is a

root also.
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Hence the nodes are symmetrically distributed with respect

to the middle point, as might be foreseen a priori;, and when
i is even, that is, for the i°^, 4*'', &c. component tones, there is

a node at the middle point.

For values of i is not greater than 3, the actual numerical

values of vl^ and ^^ must be introduced, and the equation (37)
or (37') solved by approximation.

Since the second term of (37) is essentially positive, the first

term must be negative ; and from this condition it may be

shewn (but more easily by making a graphic construction for

one or two particular cases) that the number of roots between

\ I and —\l, that is, the number of nodes, is z'+ i. Thus the

fundamental tone has two nodes, &c. (see Art. 205).

For greater values of i, it is evident on inspection of the

values of /3; given in Art. 200, that the second term of (37) will

DC

be insignificant when - is numerically small. Hence, for the

higher component tones, and for nodes not near the ends of the

rod, the values of x will be such as make the first term vanish, or

niiX . TT—; Z - = ± « TT,

/ 2

n being an integer ; and putting in this equation the approximate

value (2 z'+ i) - for »«;, we get

X i ± 2n

I 2 z'+ I

Thus the nodes which are not near the ends are distributed at

sensibly equal distances, the interval between any two con-

2
secutive nodes being ——— /.

21 + 1

202. But for values of i greater than 3, and for nodes near

the ends, we may proceed as follows. The last term of (37')

will be insignificant when x is positive, and y not a small

fraction. In the second term we may put for sin 1 0^ an ap-

proximate value derived from the equation

I

(T (mi) = sec Mi = —.—T-

(see Art. 199), which gives

2 _^
sin/"

e^i+ e""*
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(the square of e-'»i being neglected), and therefore

sin i ^^ = e-»i,

since /3j is very small. Hence the second term of (37') becomes

^ I 2

and if in this term we put the approximate value

(22 + 1)- for —i

,

4 2

the equation becomes

V3sm(^ ) + € ' ^ 4=0.
/ 2 '

Now let T- = 3, then
2 /

/- -^--
V 2 sind = e 4

; (38)

and this equation will have a determinate series of positive

roots, say Si, S2) •• 3>-, ••, which can be found by approxi-

mation. The values of x will then be given by the equation

Xf in

or, if m-i be replaced by its approximate value,

X iir— 2 $!j

I (2z'-|-l)?r
(39)

This formula gives the distances, from the middle point, of
the nodes towards the positive end. And we know that the

nodes in the negative half of the rod are respectively at the

same distances from the middle point.

It is easily found (by roughly drawing the two curves

TT

J' = V 2 sin .ar, and y = i 4)

that, for increasing values of/, $ij tends rapidly to become
X •

{j— i)it; so that the above expression for -j- tends to assume

the same form as that given in Art. 201 for nodes near the

middle. The numerical results will be given below. (Art. 205.)
203. When one end of the rod is fixed, the nodes are not

symmetrically distributed, and the positions of those near the

two ends must be found separately. For values of i not greater
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than 3, the equation (34) or (34') must be solved by approxi-

mation, after the numerical, values of a^ have been introduced.

X
But for greater values of i, and for small values of - (that is,

for nodes not near the ends), we may neglect the second term

of (34), and we then find (in the same way as at the end

of Art. 201),

Xj t± (2«+l)
_

T " 2i-l '

from which it follows that, near the middle, the interval between

2/
any two consecutive nodes is sensibly equal to —-. , and

that when i is odd (being greater than 3) one node (namely,

the middle node, if the fixed end be reckoned as one) is sensibly

at the middle of the rod.

For nodes near the firee end, since — is positive, we may

neglect the last term in (34') ; and in the second term we may
introduce the approximate value of a^ derived from the equa-

tions (Art. 198)

" ("^») = — sec OTj, cos w,i = — sin a^

;

which give approximately (as the corresponding equations in

Art. 202) sinla, = e-'".-;

so that (34') is reduced to

/- ImiX iirX
,

mi
V2C0s(-^--j+e

TT

or, since OTj= (22— 1) - approximately (see (32)),

\/2C0s(-^ T/ '

SO that, if we put
/tt ^iX ^^
2 I

we have V2cosfl+ e 1=0;

and if we call 6 ,6^^ . . . 6j,. . . the roots of this equation, then

Xi ITT .

mi-f = —-^j, or
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Xj in— I 6

J

T=(23--I)^' (4°)

for increasing values of/ it is easily seen that 6^ tends to be-

come (2 7— !)-•
2

204. For nodes near the fixed end x is negative, and there-
fore the second term of (34'), which is (see last Article) ap-
proximately *_^i

is small. Neglecting it, and putting i for cos — in the last
2

term, we have

V2C0Sf-r ^—6 » »cosz'7r = o;

m, I IT IT

or, smce — = approximately.

V 2 cos \—^ —j - € ' 2 -t COS zV = o

;

and if we now put

m.x tiT

the equation is reduced to

V 2 cos <p — € 4=0.

Let (p^, (f)^,. . . (j}y, ... be the roots of this last equation ; then

Xi /I'lr

m.

X,- iir— 2 tb-
I

.

or -T^--!—. r^; (41)

while, for increasing values of7', ^j tends to become (27+1)77.

205. The following numerical results have been given by
Seebeck ^, who, however, has treated the fundamental equations

(30) and (35) in a somewhat different manner.

Case I. (One end fixed and the other free.)

' In a memoir on the transverse vibrations of rods. {Abhandlungen d.

Math. Phys. Classe d. K. Sachs. GeselUchaft d. Wissenscbaften. Leipzig,

1852.)

O 2
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Distances of nodes from the free end, the length of the rod
being taken as unity

:

i^-^ tone, 0.2261,

3rd O.I321, 0.4999,

4* 0.0944, 0.3558, 0.6439,

it\
^-3222

^
4-9820

^
9-0007

^
4/-

3

42— 2 4 z'— 2 4 i— 2 42—2

4 z- 10.9993 4 2- 7-0175
-. > :

•

42—2 42— 2

The last i*ow in this table must be understood as meaning that

4 ;'—
3—

: may be taken as the distance of the /tl> node from the42—2 -'

free end, except for the first three and last two nodes.

Case II. (Both ends free.)

Distances of nodes from nearest end

:

i^t tone, 0.2242,
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(6'), introduced by taking account of the angular motion of the

transverse sections of the rod.

With this simplification we may write equation (8) thus for

any two different roots of the transcendental equation referred

to above

:

^+^*"^ = °'

df^Uf

in which p^^pj are two constants, of which we only require to

know that they are different.

From these equations we have

d'^U; d^u, , .

Now if we multiply this by dx, and integrate from ^ = o to

X = 1, the result is

{Pi-Pj) / «iUj dx -

for the first two terms of the equation, multiplied by dx, are

the differential of

d^Uf d^Uj d'^Uj d^u^
"^ :dx^~"''d^^'''i^~''-'j^'

of which every term vanishes at both limits, on every suppo-

sition as to the terminal conditions. (See Art. 187.)

It follows therefore that when/ is different from i

^0
u^ Uj dx = o, (43)

but / ufdxf
will be a determinate constant, depending upon/
Now the initial displacements and velocities being supposed

to be given, we have, when t=o,

where/ (.x:) and ^ {x) are functions of which the value is given

for all values of x from o to /. Hence, from (42),

2 Ai Ui =f{x), ^niBiUi =
<l>

{x)

;
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and if these equations be multipled by Ujdx, and integrated
from J? = o to ;«: = /, the result (by (43)) is

Aj / «/ dx= f(x) Uj dx,
Jo Jq

fij Bj / uf dx= \ <^ {x) Uj dx

;

Jo Jo

so that Aj, Bj are determined, and the form of the axis of the
rod at any time t is then given by equation (42).

Torsion Vibrations.

207. Torsion vibrations may be properly included in the
general class of lateral vibrations; but as they are of little

practical importance we shall discuss them briefly. Such vi-

brations will be produced when a uniform elastic rod is left

to itself after undergoing a slight disturbance by forces reducible
to couples in planes perpendicular to its axis.

If the rod were in equilibrio under the action of such forces,

it would be in a state of torsion or twist ; and the twist may be
called simple when the particles in any transverse plane section

are not displaced relatively to one another, and the distance

between any two sections remains unaltered.

Suppose a cylindrical rod, whether solid or hollow (as a

tube), to be twisted by equal and opposite couples applied only

in the planes of its ends ; then, if there is no relative displace-

ment of particles in either of these terminal sections, it is

evident that there will be none in any other transverse section

;

and it is known that the length of the rod remains unaltered, or

rather is altered only by a quantity of the second order, when
the twist is small. Under the action of such forces the rod,

when in equilibrio, will be in a state of uniform simple twist.

It is probable that such a condition cannot be realised in

practice except in the case of cylindrical rods, though it may
subsist, more or less approximately, for other forms. In what
follows we shall assume that the form is cylindrical.

208. When the twist is uniform, the rate of twist is defined

by the angle through which any transverse section is turned

relatively to any other, divided by the distance between the two

sections. And the limit of this ratio, when the distance between

the two sections is diminished indefinitely, is" the rate of twist in

that section with which they ultimately coincide, whether the

twist be uniform or not.

When the twist is uniform, all the particles which, in the
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untwisted state, lay upon any straight line parallel to the axis,

will lie upon a hehx. And the inclination of a tangent to this

helix, at any point, to the axis, will be directly proportional to

the rate of twist and to the distance from the axis. When this

inclination is small where it has its greatest value, that is, on
the exterior surface, the twist may be called small. It is evident

that a small twist is consistent with a large relative angular dis-

placement of the terminal sections, if the radius of the cylinder

be small compared with its length.

209. When equilibrium subsists under the action of couples

applied only in the planes of the terminal sections, it is evident

that the moments of these couples must be equal and opposite

;

and it is known from experiment that when the tvsdst is small,

the rate of twist is, for a rod of given material and section,

proportional to the moment of the couples.

If, besides the terminal couples, there are twisting forces

acting on the interior matter of the rod, the conditions of equi-

librium are easily found as follows. Let x be the distance of

any transverse section from one end (A) of the rod, and 6 the

angular displacement of that section. Then — (Art. 208) is

the rate of twist in a section at the distance x from A ; and the

moment of the couple which would have to be applied in the

plane of that section in order to maintain equilibrium, if the rod

were cut there, would be C ^— , C being a constant which we
ax

shall consider more particularly below.

210. Let us consider then an infinitesimal slice contained

between two sections at distances x — \dx, x-\-\dx from ^.

If all the rest of the rod were removed, it would be necessary, in

order to maintain the equilibrium of the slice, to apply in its

two faces couples of which the moments are

~^\dx~^^' )' ^^dx^^dx''^^)
(those couples being considered positive which tend to in-

crease 6).

Hence, if Lpadx be the moment of the twisting forces

acting on the mass of the slice, where p, a> are the density, and

area of section of the rod, the condition of equilibrium will be

d'^e
Lpa>dx+C -j—i dx f o,

and the differential equation of motion will be obtained from
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this as usual, by substituting for Z p a dx the sum of the mo-
ments of the resistances to acceleration of the particles of the
shce, namely, ^2^ -

where da is an element of area of the transverse section, and
r the distance of da from the axis. If then we put k for the
radius of gyration of the area of the section about the axis
of the rod, so that

\r^da = k^a>,

we shall have d'^e _ C d'^e

'dF'WJZJ^ ^^'

for the equation of motion to be satisfied at all parts of the
rod.

The terminal conditions will be

6 = at a fixed end, and

de
^— = o at a free end.
dx

(The latter condition is evident if it be observed that at a free

end the rate of twist must be o, since there is no couple in the

terminal face.)

211. On the supposition that the material of the rod is

isotropic {Tail and Thomson, § 676), and therefore equally

elastic in all directions, the constant C can be expressed in

terms of q, the modulus of elasticity (Art. 148), and of another

constant 11, the meaning of which we will now explain.

If a uniform bar, of any section, be extended by forces

applied uniformly to the surfaces of its ends only, it is known
that the transverse linear dimensions are contracted. Let t be

the longitudinal extension (see Art. 148), and ^i e the transverse

or lateral contraction ; then, the extensions and contractions

being always supposed small, /i is a constant for a given ma-
terial, and moreover must have a value between o and \, if,

as is the case with all ordinary substances, the volume of the

bar is increased under the circumstances supposed.

It can be shewn that in the case of a cylindrical, solid or

hollow, rod, the value of the constant C in the last Article is
^

k'^aq
C =

2(1+^)'

' The demonstration of these propositions is elementary, but we cannot

afford space for it here. See Klebscb, §§ 2, 3, 92.
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so that equation (i) becomes

(2)
dt'^ 2{i+n)p dx^'

212. We need not repeat the process of integrating (2), since
It IS exactly analogous to that which has been applied in former
problems (see Art. 122) and can offer no difficulty. We shall
merely give the result in two cases.

(i) If both ends of the rod are free, then

„ ^,1=00 . iTv X . /mat \
^ = :^i=i ^i cos -^ sm (-^ + a;) •

(2) If the end from which x is measured is fixed, and the
other end free, then

. •^,!=oo . . (2 2'4- 1) jT jf . /'(2 z'+ i) 77 a/ \
6 = 2,=„ A, sm ^ -I— sm (^-2_J + „^)

.

where A^, a., in each case, represent arbitrary constants, to be
determined by initial circumstances, and a is defined by the
equation

a' =
"

2(l+/i)p

The period of the- z'th tone is therefore

2/^2 (i+^)p.4 .— ( ) mease (I),

4I /2 (H-^)pNi .—

:

( I m case (2).
2Z + I ^ g f ^ '

Now comparing these with the periods of longitudinal vi-

brations of the same rod under the same terminal conditions,

we see that the tone of given order produced by torsion vi-

brations is lower than that of the same order produced by
longitudinal vibrations, by an interval of which the ratio is

(2(i+f))*-

213. The value of the constant \i, is probably different for

different substances. Navier and Poisson, by reasoning now
generally admitted to be illegitimate, deduced a priori the value

fi = i for all substances.

Wertheim found experimentally ^ ju =
-J

for glass and brass.

Kirchoff ^ found values differing sensibly from this for steel

bars, and for a drawn brass bar in which the longitudinal

elasticity differed from the lateral.

' Ann. de Chim. el de Phys. 3rd series, vol. xxiii. p. 54.

' Poggendorf, vol. cviii. p. 369.

P
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The results of the last Article would afford an experimental
means of determining /x, if it were possible to be assured that

the rods used were isotropic, and to observe with sufficient

precision the intervals between tfie tones given by longitudinal

and torsion vibrations.

Chladni asserts that this interval is always a j^//k. If this

were so, or rather, for substances in which it is so, we must
have 2 (i +;ii) = |, or /i =

-I-
If the value of /x were

-I,
the ratio

of the interval would be (f)* = 1.632.

It is impossible however, or at any rate very difficult, to

observe with great exactness the interval between the two tones,

and a small error in the ratio of the interval may evidently

produce a considerable error in the value of /i. Hence this

constant must be determined by other methods.
214. Torsion vibrations may be excited in a cylindrical rod

by friction with the same substances as would excite longitudinal

vibrations in the same rod.

Thus, if a piece of stout glass tube, four or five feet long, be
gently but firmly clamped in a table-vice at its middle, after

winding a piece of broad tape about it at that part to protect it

from the vice, and if a wet piece of the same tape be passed
once round the tube not far from its middle, and the ends
rather lightly and quickly pulled backwards and forwards at

right angles to the tube by the two hands, the torsion vibrations

will be easily produced.

When the rod is not cylindrical the friction of a bow (charged

as usual with powdered rosin) should be used. Thus the torsion

vibrations of a rectangular deal rod may be excited by clamping

one end in a vice and drawing the bow across one of its edges

at right angles to the rod, at a point distant from the fixed end

about a fourth of the length.










